
TROOP: A COLLABORATIVE TOOL FOR LIVE CODING

Ryan Kirkbride
University of Leeds

sc10rpk@leeds.ac.uk

ABSTRACT

Live Coding is a movement in electronic audiovisual per-
formance that emerged at the turn of the millennia [1] and
is now being performed all over the world through range
of artistic practices [2]. It involves the continual process of
constructing and reconstructing a computer program and,
given that most performances are improvisational in nature
[3], working together from multiple computers can provide
a challenge when performing as an ensemble. When per-
forming as a group Live Coders will often share network
resources, such as a tempo clock to coordinate rhythmic in-
formation [4,5], but rarely will they work together directly
with the same material.

This paper presents the novel collaborative editing tool,
Troop, that allows users to simultaneously work together
on the same piece of code from multiple machines. Troop
is not a Live Coding language but an environment that en-
ables higher levels of communication within an existing
language. Although written in Python to be used with
the Live Coding language FoxDot [6] Troop provides an
interface to other Live Coding languages, such as Super-
Collider [7], and can be extended to include others. This
paper outlines the motivations behind the development of
Troop before discussing its applications as a performance
tool and concludes with a discussion about the potential
benefits of the software in a pedagogical setting.

1. INTRODUCTION

1.1 Collaborative Live Coding Environments

Rather than simply sharing the same clock when playing
as a group Live Coders may choose to use a program that
specifically facilitates a collaborative or synchronised per-
formance. Such tools tend not to be programming lan-
guages themselves but software designed to aid communi-
cation between multiple computers using an existing Live
Coding language. A useful example of this is the browser-
based system Extramuros [8], which allocates each con-
nected performer a small text box on a web page into which
they can each write code. These text boxes are visible and
can be edited by any other connected performer. Extra-
muros is “language-neutral” and can be used with any lan-
guage that allows commands to be “piped” into it, which

Copyright: c© 2017 Ryan Kirkbride et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

improves accessibility to a wider range of Live Coding
practitioners.

Another browser-based tool for collaborative Live Cod-
ing is Gabber [9]; an extension to the Gibber library [10]
that combines a chat-room interface and shared text buffers
similar to Extramuros. Unlike Extramuros the edited code
in each users’ text buffers is only executed on that user’s
machine. Rohruber et al. [11] use an interface within Su-
perCollider similar to that of a chat-room to share small
blocks of code dubbed “codelets”. In contrast to Extra-
muros and Gabber, the “codelets” are shared with, but not
executed on, each connected machine. Performers can choose
to use or modify these chunks of code and submit them to
the chat-room interface. This implementation stems from
the performance style of PowerBooks Unplugged; the Live
Coding ensemble discussed by Rohruber et al. [11], whose
members sit at laptops at various points in the room and
create a varying yet connected sonic experience for au-
diences. Since then Rohrhuber has gone on to develop a
popular SuperCollider extension called The Republic [12]
that allows performers connected over a network to ac-
cess and modify one another’s code. Similarly, LOLC is
a “textual performance environment” that aims to facil-
itate methods of practice common to both improvisation
and composition, with a focus on conversational commu-
nication [13]. It is a platform for sharing shorthand mu-
sical patterns, which are then played or transformed and
re-shared by other participants.

As opposed to sending text between performers, Impromptu
Spaces uses a tuple-space that acts as a “remote bulletin-
board” for posting and retrieving information across a net-
work [14]. This creates a shared and distributed memory
that is accessible to each connected client and allows users
to manipulate global variables such as tempo while avoid-
ing any read/write clashes.

1.2 Motivation

Live Coding ensembles will often play connected over a
network in order to synchronise their music and share in-
formation between one another. This presents several chal-
lenges for both the performers and audience during a live
performance. One of the main technical challenges facing
a Live Coding ensemble is that of temporal synchronisa-
tion. Latency (the time it takes for messages to be sent
between computers) in network communication has to be
accounted for when aligning multiple performers’ com-
puter clocks. When performing over large geographical
distances a delay is affordable as long as the synchronisa-
tion between parts occurs at each end of the connection.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-104

mailto:sc10rpk@leeds.ac.uk
http://creativecommons.org/licenses/by/3.0/


This style of synchronisation is used by Ogborn [15] and
his network music duo, “Very Long Cat’, that synchronises
Live Coding and tabla drumming over the internet.

Alternatively, two or more Live Coders might perform
together at the same location in front of an audience with
each performers’ laptop creating sound separately. De-
pending on the style of music this requires each machine
to be temporally synchronised in real time, which is not
always easy to accomplish. A common way to do this is
through a clock-sharing protocol where each machine is
constantly listening to a designated time-keeper, as imple-
mented by the Birmingham Ensemble for Electroacoustic
Research [4] and Algorave pioneers, Slub [5] for exam-
ple. This requires an extra layer of configuration and is still
liable to lag between performers’ downbeat depending on
the network being used.

Another resulting problem of this style of performance
is the effect it has on the audience. Multiple Live Coders
working on individual portions of code will usually have
their work on separate screens, some, or all, of which will
be projected for the audience. This can result in a non-
optimal audience experience as there may either be too
much going on or, if there aren’t enough projectors avail-
able, not enough. One possible solution to this problem
is the shared-buffer networked Live Coding system, Extra-
muros [8]. As mentioned previously this software uses a
client-server model to connect multiple performers within
a single web page. This allows them to create their own
code and request and modify other performer’s code in the
same window, reducing the number of screens necessary to
project during the performance. However, as the number
of connected users, and consequently text boxes, increases
the font size must be reduced and the code becomes less
legible.

Gabber [9], the network performance extension to the
JavaScript based language, Gibber, works in a similar way
but also allows users to interact with each others code di-
rectly within the same text buffer. This allows for only one
screen to be projected but all performers’ work to be dis-
played. Originally Gabber used “a single, shared code ed-
itor” but it was found to be problematic “as program frag-
ments frequently shifted in screen location during perfor-
mances and disturbed the coding of performers”. Gabber
has since moved to a more distributed model. The single,
shared text buffer model may have proved problematic in
this instance but has seen much mainstream success, most
notably in Google Docs [16], and has prompted me to cre-
ate a similar tool for concurrent Live Coding collaboration
entitled Troop.

2. DESIGN

The purpose of the Troop software is to allow multiple Live
Coders to collaborate within the same document in such
a way that audience members will also be able to identify
the changes made by the different performers. This section
outlines the steps taken to achieve this and briefly describes
the two types of network architecture used in this project.

2.1 Development Language

Troop is designed to work with the Live Coding language,
FoxDot [6] but, like Extramuros, it can be language neutral
with a small amount of configuration. The programming
language Python 1 is useful for fast software development
and comes with a built-in package for designing graphi-
cal user interfaces (GUIs) called Tkinter. As FoxDot is
written in Python it makes it easy to pipe commands to its
interpreter from Troop.

2.2 Interface

The philosophy behind Troop is that all performers seem-
ingly share the same text buffer and contribute to its con-
tent at the same time. To allow each performer to differ-
entiate their own contributions from others each connected
performer is given a different coloured label which con-
tains their name. This label’s position within the input text
box is mapped to the location of the respective performer’s
text cursor, as shown in Figure 1.

Figure 1. A screen shot of the first iteration of the Troop
interface with three connected users.

As time elapses during a performance and the text buffer
begins to fill up it is not always possible to separate the in-
dividual contributions and it becomes unclear as to whom
has written what; even to the performers. This problem
has been identified by Xambó et al. [17], stating there is a
challenge in “identifying how to know what is each others
code, as well as how to know who has modified it”.

To help combat this problem and differentiate each per-
formers’ contributions each connected performer is allo-
cated a different colour for text (see Figure 2) and high-
lighting. By doing this performers can leave traces of their
own coloured code throughout the communal text buffer.
Editing a block of another performer’s code interweaves
their colours and thought processes, creating a lasting vi-
sual testament to a collaborative process; or at least un-
til someone else makes their own edit. The colour of the
text entered by each performer matches the colour of their
marker to retain a consistency in each performers’ iden-
tity. It is customary in Live Coding for evaluated code to
be temporarily highlighted and by doing this in separate
colours it allows both audience and performers to identify
the source of that action.

1 http://python.org/

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-105

http://python.org/


Figure 2. A screen shot of the second iteration of the Troop
interface with three connected users.

Performers contributions are also measured in terms of
quantity of characters present. In the bottom right corner
of 2 there is a bar-chart that displays the proportion of code
contributed by each performer. As a collaborative perfor-
mance tool it is particularly interesting to keep track of this
information and use it as a creative constraint for a perfor-
mance (see section 4.2.1 for a discussion on this).

2.3 Network Architecture

The Troop software uses a client-server model but can be
set up in two ways based on which machine will be han-
dling code execution.

2.3.1 Server-Side Execution Model

This first design uses a centralised synchronous networked
performance model similar to that of LOLC [13] and trans-
fers messages using TCP/IP to ensure all messages are sent
over the network. The server runs on a machine dedicated
to listening to client applications (see figure 3), which are
sending keystroke information, and handles the code ex-
ecution and sound creation. Incoming keystroke data are
stored in a queue structure to avoid sending data sent from
two clients simultaneously in differing orders to other clients.
As the number of connected clients increases so too would
the chance of this error occurring. A disadvantage of stor-
ing all keystroke data in a queue on the server is that there
is sometimes a noticeable latency between pressing a key
and the corresponding letter appearing the text editor de-
pending on the network.

In this topology only the server machine executes code
and schedules musical events, which eliminates any need
for clock synchronisation. This method also utilises a cen-
tralised shared name-space, which doesn’t require infor-
mation about the code to be sent to the client applications.
The disadvantage to this approach is that all performers
must be “local” to the server (a client and server can be
run on the same machine together) if they want to hear the
performance, unless they stream the audio through another
program from the server machine.

2.3.2 Client-Side Execution Model

When performers are not co-located it might be required
that code is run on the client machines as opposed to the

FoxDot

Server

ClientClient

Sound Output

Client

Figure 3. Network diagram for Troop’s server-side execu-
tion model.

server. In this case, the Troop server is run with an extra
command-line argument:

./run-server.py --client

This signals to the server to send information about what
code to evaluate back to the client. Figure 4 shows how
the code execution and sound creation are shifted to the
client’s responsibility in this set up. A client-server model
was adopted over a peer-to-peer topology as it meant that
the client application did not have to be reconfigured based
on where the code was being executed and the centralised
server queue structure for storing keystrokes could still be
used.

The nature of Troop’s concurrent text editing means that
code in each client’s text buffer is identical. This means
that there is no need to use a shared name-space, such as
in [14,18], as the data is reproduced on each connected ma-
chine. An advantageous consequence of this is that Troop
need only send raw text across the network and no serialis-
ing of other data types is required in order for the program
to be reproduced on multiple machines.

FoxDot

Client

ClientClient

Sound Output

FoxDot

Sound Output

FoxDot

Sound Output

Server

Figure 4. Network graph of Troop’s client-side execution
model.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-106



2.4 Extending the software for other languages

Troop contains a module called interpreter.py that
defines the classes used for communicating with host Live
Coding languages. Currently there are interpreter classes
for the FoxDot and SuperCollider languages. If a language
can take a raw string input and convert that to usable code
then Troop will be able to communicate with it. Specifying
the lang flag at the command line, followed by the name
of the desired language, will start the client with a different
interpreter to FoxDot like so:

./run-client.py --lang SuperCollider

By giving performers flexible access to multiple Live Cod-
ing languages Troop can enhance musical expressivity and
broaden the channels for collaboration.

3. SYNCHRONISATION

3.1 Maintaining Text Consistency

One of the most difficult aspects to this project was making
sure that the contents of the text buffer for each connected
client remained identical. In Troop’s first iteration, text
would be added immediately on the local client then sent
to the server to be forwarded to the other connected clients.
Problems arose mainly when two clients were editing the
same line, which caused the characters to be in different or-
ders for each client. To combat this the clients in the next
version of Troop would send all keystroke information to
the server, which dispersed them to each client in the same
order. This worked very well if the server application was
running on the local machine but there were noticeable de-
lays between key-press and text appearing on screen when
connecting to a public server running Troop in a London
data centre.

A solution was to combine these two input systems to
maximise efficiency and still maintain consistency between
client’s text. When a key is pressed, Troop checks if there
are any other client’s currently editing the same line as the
local client and if there are, it sends all the information to
server to make sure the characters are entered in the same
order for every client. If the local client is the only one
editing a line the character is added immediately on the lo-
cal machine and then sent to the server to tell other clients
to add the character. This reduces latency for character in-
puts when clients are not interfering with one another but
also maintains consistency at times when they are.

3.2 Limiting Random Values

When random number generators are utilised to define pitches
and rhythms their values may become inconsistent between
each machine and each performer will consequently hear
a different piece of music. This can be combated by se-
lecting the random number generator’s seed at the start
of the performance. In FoxDot for example, evaluating
the command Random.seed(1) will do so for all con-
nected clients and will consequently mean that any random
elements will, although appear random, be completely de-
terministic for that session.

3.3 Clock Synchronisation

Along with information about each client’s keystrokes, the
Troop server sends a “ping” message to each connected
client once every second. This serves two purposes; the
first is to periodically check that each client can still be
contacted and remove those that cannot from its address
book, and the second is to aid clock synchronisation. A
consequence of this “ping” message is that the settime
method of Troop’s interpreter class (Section 2.4) is called
with a value, which can then communicate with whatever
time-keeping data structure is used by the host language if
need be.

4. CONCLUSIONS

This paper has presented the Live Coding environment,
Troop, and discussed its potential as a tool for enhanc-
ing channels for collaboration and communication in Live
Coding ensembles.

4.1 Applications in Teaching

Music has been used as a useful teaching analogy for com-
puter science in younger age groups, as demonstrated by
software such as Scratch [19] and the Live Coding lan-
guage Sonic-Pi [20], and collaborative Live Coding can
help move student thinking “from an individual to a social
plane” [17].

By running several Troop servers in a classroom environ-
ment Troop would encourage collaborative work between
students and allow a single teacher to monitor the work of
multiple groups of students from a single machine.

4.2 Future Extensions

4.2.1 Adding Creative Constraints

Troop is an environment that facilitates group work over a
network but each contributor in a document still maintains
their own identity within the process through the use of
coloured code. Maintaining this identity requires the num-
ber of characters entered by each user to be stored. This
information could be used to add a constraint to a particu-
lar session to explore different collaborative approaches to
Live Coding.

On each keystroke it would be possible to test a constraint
and then only add the character to the text buffer if that test
returns true. An example of this might be to disallow a sin-
gle user to take up more than 50% of the text buffer, which
could easily be achieved using the short function outlined
in pseudo-code in Figure 5. The start of the performance
would be difficult as performers would have to work to-
gether slowly to make sure they don’t spend long periods
of time waiting for other users to catch up, but as the to-
tal number of characters in the text buffer increased so too
would the flexibility for writing larger portions of code in
one go.

Another example might be to “ban” a random user from
typing for a number of seconds to try and force them to
look at what the rest of their ensemble are doing, or to
only allow them to edit a single line of code written by one

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-107

lang


def constraint(text, client):
if client.chars > text.chars / 2:

return False
else:

return True

Figure 5. Example pseudo-code for a creative constraint
for Troop.

of their co-performers. The next iteration of Troop will
implement a constraints.pymodule that will contain
several creative constraints and allow users to define their
own functions.

4.2.2 Web Browser Version

Live Coding environments such as Gibber [10] and Live-
CodeLab [21] run in most standard web browsers and re-
quire no installation on the client machine. This lowers the
barriers to entry and also makes the application platform-
independent (provided the web browser itself runs correctly).
Moving Troop to a Javascript based client could help pro-
vide a simpler set up procedure for those newer to com-
puter programming.

4.3 Evaluation

Currently a small group of performers are learning to use
the FoxDot and Troop software in order to perform at an
event at the end of April 2017. Feedback from both the
users and audience members will be collected, assessed,
and contribute to the further development of Troop.

Acknowledgments

This research is funded by the White Rose College of Arts
and Humanities (http://www.wrocah.ac.uk).

5. REFERENCES

[1] N. Collins, A. McLean, J. Rohrhuber, and A. Ward,
“Live coding in laptop performance,” Organised
sound, vol. 8, no. 03, pp. 321–330, 2003.

[2] TOPLAP, “TOPLAP — the home of live coding,” http:
//toplap.org/, 2004, accessed: 08/12/16.

[3] T. Magnusson, “Herding cats: Observing live coding
in the wild,” Computer Music Journal, vol. 38, no. 1,
pp. 8–16, 2014.

[4] S. Wilson, N. Lorway, R. Coull, K. Vasilakos, and
T. Moyers, “Free as in beer: Some explorations into
structured improvisation using networked live-coding
systems,” Computer Music Journal, vol. 38, no. 1, pp.
54–64, 2014.

[5] A. McLean, “Reflections on live coding collaboration,”
Proceedings of the Third Conference on Computation,
Communication, Aesthetics and X. Universidade do
Porto, Porto, p. 213, 2015.

[6] R. Kirkbride, “FoxDot: Live coding with python
and supercollider,” in Proceedings of the International
Conference of Live Interfaces, 2016, pp. 194–198.

[7] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, 2002.

[8] D. Ogborn, “d0kt0r0/extramuros: language-neutral
shared-buffer networked live coding system,”
https://github.com/d0kt0r0/extramuros, 2016, ac-
cessed 13/12/16.

[9] C. Roberts, K. Yerkes, D. Bazo, M. Wright, and
J. Kuchera-Morin, “Sharing time and code in a
browser-based live coding environment,” in Proceed-
ings of the First International Conference on Live Cod-
ing. Leeds, UK: ICSRiM, University of Leeds, 2015,
pp. 179–185.

[10] C. Roberts and J. Kuchera-Morin, Gibber: Live cod-
ing audio in the browser. Ann Arbor, MI: Michigan
Publishing, University of Michigan Library, 2012.

[11] J. Rohrhuber, A. de Campo, R. Wieser, J.-K. van Kam-
pen, E. Ho, and H. Hölzl, “Purloined letters and dis-
tributed persons,” in Music in the Global Village Con-
ference (Budapest), 2007.

[12] A. de Campo and J. Rohrhuber, “Republic,” https:
//github.com/supercollider-quarks/Republic, accessed:
05/02/2017.

[13] J. Freeman and A. Van Troyer, “Collaborative textual
improvisation in a laptop ensemble,” Computer Music
Journal, vol. 35, no. 2, pp. 8–21, 2011.

[14] A. C. Sorensen, “A distributed memory for net-
worked livecoding performance,” in Proceedings of the
ICMC2010 International Computer Music Conference,
2010, pp. 530–533.

[15] D. Ogborn, “Live coding together: Three potentials of
collective live coding,” Journal of Music, Technology
& Education, vol. 9, no. 1, pp. 17–31, 2016.

[16] Google, “Google docs - create and edit documents on-
line, for free,” https://www.google.co.uk/docs/about/,
2017, accessed: 02/02/17.

[17] A. Xambó, J. Freeman, B. Magerko, and P. Shah,
“Challenges and new directions for collaborative live
coding in the classroom,” 2016.

[18] S. W. Lee and G. Essl, “Models and opportunities for
networked live coding,” in Live Coding and Collabo-
ration Symposium, vol. 1001, 2014, pp. 48 109–2121.

[19] A. Ruthmann, J. M. Heines, G. R. Greher, P. Laidler,
and C. Saulters II, “Teaching computational thinking
through musical live coding in scratch,” in Proceedings
of the 41st ACM technical symposium on Computer sci-
ence education. ACM, 2010, pp. 351–355.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-108

http://www.wrocah.ac.uk
http://toplap.org/
http://toplap.org/
https://github.com/d0kt0r0/extramuros
https://github.com/supercollider-quarks/Republic
https://github.com/supercollider-quarks/Republic
https://www.google.co.uk/docs/about/


[20] S. Aaron, “Sonic pi performance in education, tech-
nology and art,” International Journal of Performance
Arts and Digital Media, vol. 12, no. 2, pp. 171–178,
2016.

[21] D. Della Casa and G. John, “Livecodelab 2.0 and
its language livecodelang,” in Proceedings of the 2nd
ACM SIGPLAN international workshop on Functional
art, music, modeling & design. ACM, 2014, pp. 1–8.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-109


