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ABSTRACT

With the proliferation of video content of musical perfor-
mances, audio-visual analysis becomes an emerging topic
in music information retrieval. Associating the audio and
visual aspects of the same source, or audio-visual source
association, is a fundamental problem for audio-visual anal-
ysis of polyphonic musical performances. In this paper,
we propose an approach to solve this problem for string
ensemble performances by analyzing the vibrato patterns.
On the audio side, we extract the pitch trajectories of vi-
brato notes of each string player in a score-informed fash-
ion. On the video side, we track the left hand of string play-
ers and capture their fine-grained left-hand vibration due to
vibrato. We find a high correlation between the pitch fluc-
tuation and the hand vibration for vibrato notes, and use
this correlation to associate the audio and visual aspects of
the same players. This work is a complementary extension
to our previous work on source association for string en-
sembles based on bowing motion analysis. Experiments on
19 pieces of chamber musical performances with at most
one non-string instrument show more accurate and robust
association performance than our previous method.

1. INTRODUCTION

Music performance, by its nature, is a multi-modal art form.
Both the audio and visual aspects of music performance
play an important role in engaging the audience in live
concerts. Indeed, watching musical performances is of-
ten more entertaining than purely listening, since the play-
ers’ motion visually interprets the melody and attracts the
audiences. No wonder, for recorded music, the popular-
ization of video streaming services such as YouTube, has
also greatly shifted the dominating recording format from
purely audio to video [1]. Despite the rich multi-modality
of music, current Music Information Retrieval (MIR) re-
search still mainly focuses on the audio modality of music,
ignoring the visual aspects.

Joint analysis of audio and visual aspects of musical per-
formances can significantly boost the state of the art of
MIR research. Challenging tasks such as instrument recog-
nition and activity detection in musical performances can
be simplified by analyzing the visual aspects [2]. Joint
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Figure 1. Framework of the proposed system. Separated
sources are associated with players in the video, encoded
with different colors.

analysis can also augment existing audio-based approaches
to chord recognition [3] and onset detection [4] by track-
ing performers’ hands and fingers . These benefits are es-
pecially prominent for analyses of polyphonic music, be-
cause the visual activity of each player is usually directly
observable, whereas the polyphony makes it difficult to un-
ambiguously associate components of the audio to each
player [5]. Audio-visual analysis also opens up new fron-
tiers for several existing and new MIR problems such as
the analysis of sound articulation and performance expres-
siveness [6], fingering investigation [7], conductor follow-
ing [8], source localization [9], etc.

A basic problem in audio-visual analysis of polyphonic
music performances is to figure out the association be-
tween the audio and visual aspects of each sound source.
This task was named audio-visual source association in
our prior work [10]. It is an important problem because
it is required if one wants to incorporate visual analysis in
parsing the musical scene. On the application side, such
association links audio editing (e.g., remixing) and video
editing (e.g., recomposing) of sound sources. It enables
cameras to automatically follow and take close-up shots of
the instrumental part that is playing the main melody. It
can also enable novel multimedia interactions such as mu-
sic video streaming services that allow users to click on a
player in the video and isolate/enhance the corresponding
audio components.

In this paper, we propose an approach to solve the audio-
visual source association problem for string ensemble per-
formances through multi-modal analysis of vibrato notes.
Specifically, we show that the fine-grained motion of the
fingering hand has a strong correlation with the pitch fluc-
tuation of vibrato notes, and we use this correlation to solve
source association for string ensembles in a score-informed
fashion. Fig. 1 shows the framework of the proposed
approach. On the audio side, we first estimate the pitch
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trajectory of each note of each instrument from the audio
mixture in a score-informed fashion. Then, we detect vi-
brato notes by inspecting the periodicity of the pitch fluc-
tuation. On the visual side, we first track the left hand of
each string player, and then capture the fine motion of the
hand using optical flow, resulting in a 1-D hand displace-
ment curve along the principal motion direction. For each
source-player pair, we define a matching score based on the
cross correlation between the concatenated pitch trajecto-
ries of all vibrato notes and the concatenated displacement
curve segments in the corresponding time ranges. Finally,
the bijection between sources and players that maximizes
the overall matching score is output as the association re-
sult.

This is a complementary extension to our previous work
on source association [11] that uses the correlation between
bowing strokes and score note onsets. When vibrato is
used, the proposed approach offers a more accurate and
robust solution, as the correlation between the audio and
visual aspects is now performed through the entire pro-
cess of vibrato notes instead of only the onsets as in our
previous work. This advantage is shown by the better as-
sociation performance on 19 video recordings of chamber
musical performances that use at most one non-string in-
struments. In the following, we first describe related work
on audio-visual association in Section 2. We then describe
the proposed approach in Section 3. We evaluate the sys-
tem in Section 4 and conclude the paper in Section 5.

2. RELATED WORK

There has been some previous work on audio-visual source
association for speech and music signals. Hershey and
Movellan [9] first explored the audio-visual synchrony to
locate speakers in the video. In [12], a region tracking
algorithm was applied to segment the video into tempo-
ral evolution of semantic objects to be correlated with au-
dio energy. Casanovas et al. [13] applied non-linear diffu-
sion to extract the pixels whose motion is most consistent
with changes of audio energy. In [14], source localization
results are incorporated into graph-cut based image seg-
mentation to extract the face region of the speaker. Other
methods include time delayed neural networks [15], prob-
abilistic multi-modal generative models [16], and canoni-
cal correlation analysis (CCA) [17, 18]. All of the above-
mentioned systems, however, assume that there is at most
one active sound source at a time.

When multiple sources are active simultaneously, cross-
modal association can be utilized to isolate sounds that cor-
respond to each of the localized visual features. Barzelay
and Schechner [19, 20] detected drastic changes (i.e., on-
sets of events) in audio and video and then used their coin-
cidence to associate audio-visual components belonging to
the same source of harmonic sounds. Sigg et al. [21] refor-
mulated CCA by incorporating non-negativity and sparsity
constraints on the coefficients of the projection directions,
to locate sound sources in movies and separate them by
filtering. In [22], audio and video modalities were decom-
posed into relevant structures using redundant representa-
tions for source localization. Segments where only one

source is active are used to learn a timbre model for the
separation of the source. These methods, however, only
deal with mixtures with at most two active sources. The
difficulty of source association increases dramatically as
the source number increases.

The audio-visual source association problem for chamber
music ensembles is more challenging since several sound
sources are active almost all the time. In [11], we pro-
posed the first approach to audio-visual source association
for string ensembles in a score-informed fashion where
there are up to five simultaneously active sources (e.g.,
string quintets). This approach analyzes the large-scale
motion from bowing strokes of string-instrument players
and correlates it with note onsets in the score track. The
assumptions are that most note onsets correspond to the
beginning of bowing strokes, and that different instrumen-
tal parts show different rhythmic patterns. When these as-
sumptions are invalid, for example, when multiple notes
are played within a single bow stroke (i.e., legato bowing)
or when different parts show a similar rhythmic pattern,
this approach becomes less robust.

The analysis of the fingering hand motion due to vibrato
articulations and their correlation to pitch fluctuations in
this paper is a complementary extension of [11]. It ex-
tends the large-scale motion analysis of the bowing hand to
the fine-grained motion analysis of the fingering hand. It
also extends the audio-visual correlation from the discrete
note onsets to the entire processes of vibrato notes. As vi-
brato articulations are common practices for string instru-
ment players (at least for skilled players), and the vibrato
parameters (e.g., rate, depth, and phase) of different play-
ers are quite different, this vibrato cue provides robust and
complementary information for audio-visual source asso-
ciation for string ensembles.

3. METHOD

3.1 Audio Analysis

The main goal of audio analysis is to detect and analyze
vibrato notes in a score-informed fashion. There has been
much work on vibrato analysis for both singing voices [23]
and instruments [24], but most of them only deal with mono-
phonic music. For methods that do deal with polyphonic
music, they only analyze vibrato in the melody with the
presence of background music [25]. The more challeng-
ing problem of vibrato detection and analysis for multi-
ple simultaneous sources is, however, rarely explored. In
this paper, we first separate sound sources using a score-
informed source separation approach [26] and then per-
form pitch analysis on each source to extract and analyze
vibrato notes.

3.1.1 Score-informed Source Separation

Musical sound sources are often strongly correlated in time
and frequency, and without additional knowledge the sep-
aration of the sources is very difficult. When the musi-
cal score is available, as for many Western classical music
pieces, the separation can be simplified by leveraging the
score information. In recent years, many different models
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Figure 2. Process of audio analysis. Detected vibrato notes
are marked with green rectangles in the pitch trajectories.

have been proposed to explore this idea, including Non-
negative Matrix Factorization (NMF) [27–29], Gaussian
Mixture Models (GMM) [30], and adaptive instrument mod-
els [31]. In this paper, we adopt the pitch-based score-
informed source separation approach of [26] and modify it
for our task.

This approach consists of three main steps: audio-score
alignment, pitch refinement, and source separation. The
task of audio-score alignment is to guarantee the tempo-
ral synchronization between score events and audio artic-
ulations. We apply the Dynamic Time Warping (DTW)
framework described in [11] instead of the online parti-
cle filtering approach in [26] for more accurate and robust
alignment results.

The pitch refinement and source separation steps remain
the same as those described in [26]: Pitches that are ac-
tually played in the music are first estimated within two
semitones around the quantized score-notated pitches. Sound
sources are then separated by harmonic masking of the
pitches in each frame, where the soft masks take into ac-
count the harmonic indexes when distributing the mixture
signals’ energy to overlapping harmonics.

3.1.2 Vibrato Extraction

For each separated source, we apply the above-mentioned
score-informed pitch refinement step again to estimate a
robust pitch trajectory. We then segment the pitch trajec-
tory into notes using the onset and offset information from
the score. Vibrato notes are detected by checking the peri-
odicity of their pitch trajectories. To do so, we borrow the
idea of YIN pitch detection [32] to calculate the difference
function of the pitch trajectory for each note i:

di(τ) =

toff
i −τ∑
t=ton

i

(F (t)− F (t+ τ))2, (1)

where F (t) is the estimated pitch trajectory of the source,
ton
i and toff

i are the onset and offset frame indexes of the
i-th note, and τ ∈ {0, 1, · · · , toff

i } is the time lag in the
calculation. Then we calculate the normalized difference
function d′i(τ) using its cumulative mean as:

d′i(τ) =

{
1 if τ = 0

di(τ)/[(1/τ)
∑τ
k=1 d(k)] otherwise

. (2)

Figure 3. Hand tracking results. Feature points are marked
by blue crosses, based on which the fingering hand is lo-
calized and bounded by a green bounding box.

As explained in [32], minτ d
′
i(τ) is a good indicator of

whether periodicity exists or not, considering the energy
of the signal. We use the threshold of 0.5, roughly tuned
on one piece. If minτ d

′
i(τ) is smaller than the threshold,

the note is considered to have vibrato. Fig. 2 highlights the
pitch trajectories of the detected vibrato notes with green
boxes.

It is noted that during the score-informed source separa-
tion process, the pitch trajectories of all sound sources have
already been estimated. We do not, however, directly use
this result, because we find that the pitch estimates are less
accurate than those estimated from the separated sources.
This suggests that the harmonic masking, although not per-
fect, does significantly reduce the interferences from other
sources. It is also noted that the extracted vibrato pitch tra-
jectories are still likely to contain errors, especially when
multiple instruments play the same note. However, we will
show that they are accurate enough for the audio-visual
source association purposes.

3.2 Video Analysis

After retrieving the vibrato pitch trajectories from audio
sources, we aim to extract the motion features from the
visual aspect so that they can be correlated with the pitch
fluctuations. A string instrument player mainly shows three
kinds of motions when playing: bowing motion to artic-
ulate notes, fingering motion to control pitches, and the
whole body motion to express musical intentions. Vibrato
articulation is embodied as subtle motions on the left hand
that rock forwards and backwards along the fingerboard. It
changes the length and tension of the string. This rocking
motions usually have a frequency ranging from 4 Hz to 7.5
Hz [33]. To capture this subtle motion, we first identify a
region that covers the player’s left hand, then estimate the
rough position of the hand over time with a feature point-
based tracker. Finally, we estimate the fine motion of the
hand using optical flow analysis within the hand region.

3.2.1 Hand Tracking

Given the bounding box initialization of the hand position,
we apply the Kanade-Lucas-Tomasi (KLT) tracker to track



the rough position of the left hand. This method was orig-
inally proposed in [34]. It extracts feature points using the
minimum eigenvalue algorithm in a given region specified
in the first video frame and then track these points through-
out the video based on assumptions such as brightness con-
stancy and spatial coherence. For our implementation (see
Fig. 3), we manually specify a rectangle bounding box (70
× 70 pixels) to cover the left hand in the first frame and
initialize 30 feature points within the bounding box using
corner-point detector. We then track the points in follow-
ing frames and relocate the center of the bounding box to
the median x- and y- coordinates of the points. In order to
prevent the loss of tracking due to abrupt motion or occlu-
sions, we re-initialize the feature points every 20 frames, if
some points disappear.

3.2.2 Fine-grained Motion Capture

To capture the fine motion of the left hand, we apply op-
tical flow estimation [35] on the original video frames to
calculate pixel-level motion velocities. For each frame, the
average motion velocity over all pixels within the bound-
ing box is calculated as u(t) = [ux(t), uy(t)]. Notice that
the pixel motions in the bounding box contain not only the
player’s hand vibrato motion but also his/her overall slower
body motion while performing the music. This motion not
only contains the hand vibration due to vibrato, but it also
contains the overall slower body movement that is not as-
sociated with vibrato. In order to eliminate the body move-
ment and obtain a clean description of the vibrato motion,
we subtract u(t) by a moving average of itself, as

v(t) = u(t)− ū(t), (3)

where ū(t) is the moving average of u(t) by averaging
over 10 frames. Fig. 4 displays one example with the orig-
inal hand region in Fig. 4(a) and the optical flow result in
Fig. 4(b). The refined motion velocity v(t) across all the
frames is scattered in an x-y plane in Fig. 4(c).

(a) (b)
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Figure 4. Fine-grained left hand motion detection from
optical flow. (a) Original video frame showing the hand
region. (b) Optical flow results encoding motion velocities
via colors. (c) Scatter plot of frame-wise average motion
velocities of all frames.

We apply Principal Component Analysis (PCA) on v(t)
across all frames to identify the principal direction of mo-
tion, which is ideally along the fingerboard. The refined
motion velocity vectors are then projected to this principal
direction to obtain a 1-D motion velocity curve V (t) as

V (t) =
v(t)T ṽ

‖ṽ‖
, (4)

where ṽ is the eigenvector corresponding to the largest
eigenvalue of the PCA of v(t). We then perform an inte-
gration of the motion velocity curve over time to calculate
a motion displacement curve as

X(t) =

∫ t

0

V (τ)dτ. (5)

This hand displacement curve corresponds to the fluctu-
ation of the vibrating length of the string and hence the
pitch fluctuation of the note. Fig. 5 plots the extracted
motion displacement curve X(t) of one player along with
the pitch trajectory. We find that when vibrato is detected
from audio (labeled in green rectangles), there are always
observable fluctuations in the motion.
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Figure 5. Pitch trajectory with detected vibrato notes
marked by green rectangles from audio analysis and the
left-hand motion curve of the corresponding player from
video analysis.

3.3 Source-Player Association
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Figure 6. Pitch trajectory of one vibrato note (left), and the
normalized left-hand displacement curves of the two play-
ers (right, black curves) overlaid with the normalized pitch
trajectory (green curves). Note how well the pitch trajec-
tory matches the displacement curve of Player 1 (correct
association) but not of Player 2 (incorrect association).

The audio-visual association is a bijection between play-
ers and audio sources. This is obtained by matching the
pitch trajectories and the visual displacement curves at the
note level. Fig. 6 compares the pitch trajectory of one vi-
brato note with the displacement curves of two players at
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the same time range. All of the curves have been normal-
ized to have zero mean and unit Root-Mean-Square (RMS)
value. Clearly, Player 1 is a better match. Quantitatively,
we measure the similarity between the pitch trajectory of
each note of the p-th source and the hand displacement
curve of the q-th player in the corresponding time range
by

m[p,q](i) = exp


〈
F̂ [p](ti) · X̂ [q](ti)

〉
∥∥∥F̂ [p](ti)

∥∥∥∥∥∥X̂ [q](ti)
∥∥∥
 , (6)

where ti = [ton
i , t

off
i ] represents the time range of the i-th

note from its onset ton
i to offset toff

i , F̂ and X̂ are the nor-
malized pitch trajectories and hand displacement curves,
respectively, and 〈·〉 represents the vector inner product.
Then the overall matching score between the p-th source
and the q-th player can be defined as the sum of the simi-
larities of all vibrato notes:

M [p,q] =

N
[p]
vib∑
i=1

m[p,q](i), (7)

where N [p]
vib is the number of detected vibrato notes of the

p-th source.
For an ensemble with K players, there are K! bijective

associations (permutations). Let σ(·) be a permutation func-
tion, then the p-th audio source will be associated with
the σ(p)-th player. For each permutation, we calculate
an overall association score as the product of all pair-wise
matching scores, i.e., Sσ =

∏K
p=1M

[p,σ(p)]. We then rank
all of the association candidates in a descending order and
return the first candidate as the final association.

4. EXPERIMENTS

We evaluate the proposed approach on the University of
Rochester Musical Performance (URMP) dataset 1 [36].
This dataset contains isolately recorded but synchronized
audio-visual recordings of all instrumental parts of 44 clas-
sical ensemble pieces ranging from duets to quintets. For
our experiments, we use the 11 string ensemble pieces and
8 other pieces that use only one non-string instrument, to-
taling 19 pieces including 5 duets, 4 trios, 7 quartets, and
3 quintets. Fig. 8 shows screen shots of the performance
videos of all the 19 test pieces. Most pieces have a length
of 2-3 minutes, providing enough cues for source associ-
ation. Detailed information about these pieces is listed in
Table 1.

Audio is sampled at 48 KHz, and processed with a frame
length of 42.7 ms and a hop size of 10 ms for the Short-
Time Fourier Transform (STFT). Video resolution is 1080P,
and the frame rate is 29.97 frames per second. The audio
and video streams have been carefully synchronized in the
dataset. The estimated pitch trajectories are interpolated to
make the first pitch estimate correspond to time at 0 ms.
The estimated hand displacement curves are also interpo-
lated to make them have the same sample rate as the pitch

1 http://www.ece.rochester.edu/projects/air/projects/datasetproject.html
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Figure 7. Box plots and scatter plots of note-level match-
ing accuracy of string-instrumental sources of all pieces
grouped by polyphony. Each data point represents the
accuracy of one source. The blue lines mark the ran-
dom guess accuracies. Numbers above the figures are me-
dian/mean values.

trajectories, i.e., 1 sample every 10 ms. For non-string in-
struments where the vibrato is not generated by hand mo-
tion, we do not track the hand nor capture the motion; In-
stead, we set the hand displacement curve of these players
in Eq. (5) to all zeros.

4.1 Note-level Matching Accuracy

As the matching score matrix M [p,q] used to find the best
source association is the sum of the matching scores of
all vibrato notes m[p,q](i), we first evaluate how good the
note-level matching scores are. To do so, we calculate a
note-level matching accuracy, which is defined as the per-
centage of vibrato notes of each source that best matches
the correct player according to the note-level matching score.
Fig. 7 shows the boxplots and scatter plots of this measure
of all sources (excluding the non-string instruments) of all
pieces, grouped by their polyphony. Each point represents
the accuracy of one source, and the numbers above show
the median/mean values. The blue lines mark the accura-
cies based on random guess, e.g., the chance to randomly
match a note to the correct player in a quartet is 25%. We
find that this accuracy drops as the polyphony increase be-
cause of 1) the more incorrect candidates and 2) the less
good quality of the extracted pitch trajectory of vibrato
notes from high-polyphonic audio mixtures. Outliers in the
figures are sources that only contain a few vibrato notes.

It is noted that a less good note-level matching accuracy
does not necessarily lead to a bad piece-level source asso-
ciation, because the latter considers all the vibrato notes
in a piece. In fact, as long as the note-level matching is
somewhat accurate, the ensemble decision considering all
of the vibrato notes at the piece-level is quite reliable, as
illustrated in the following experiment.

4.2 Piece-level Source Association Results

We then evaluate the piece-level source association accu-
racy. The estimated association for each piece is consid-
ered correct if and only if all the sources are associated
to the correct players. As the number of permutations is
the factorial of the polyphony, this task becomes much
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Figure 8. Screen shots of the 19 test pieces. Due to limited conditions of the recording facilities, all players faced to the
same direction and some parts of certain players were not captured by the camera. These artifacts might have made the
visual analysis of left-hand motion easier than in real-world performance recordings.

Metadata Association Measures

No. Dataset Folder Name
(with Instrument Types)

Piece Length
(mm:ss)

Polyphony -
(No. Permutations)

No. Correctly
Associated Sources

Rank of
Correct Association

1 01 Jupiter vn vc 01:03 2 - (2) 2 1
2 02 Sonata vn vn 00:46 2 - (2) 2 1
3 08 Spring fl vn 00:35 2 - (2) 2 1
4 09 Jesus tpt vn 03:19 2 - (2) 2 1
5 11 Maria ob vc 01:44 2 - (2) 2 1
6 12 Spring vn vn vc 02:11 3 - (6) 3 1
7 13 Hark vn vn va 00:47 3 - (6) 3 1
8 19 Pavane cl vn vc 02:13 3 - (6) 1 2
9 20 Pavane tpt vn vc 02:13 3 - (6) 3 1

10 24 Pirates vn vn va vc 00:50 4 - (24) 4 1
11 25 Pirates vn vn va sax 00:50 4 - (24) 4 1
12 26 King vn vn va vc 01:25 4 - (24) 4 1
13 27 King vn vn va sax 01:25 4 - (24) 2 1
14 32 Fugue vn vn va vc 02:54 4 - (24) 4 1
15 35 Rondeau vn vn va db 02:08 4 - (24) 4 1
16 36 Rondeau vn vn va vc 02:08 4 - (24) 4 1
17 38 Jerusalem vn vn va vc db 01:59 5 - (120) 5 1
18 39 Jerusalem vn vn va sax db 01:59 5 - (120) 5 1
19 44 K515 vn vn va va vc 03:45 5 - (120) 5 1

Table 1. Detailed information of the 19 test pieces together with the source association performance of the proposed
approach. Abbreviations of instruments are: violin (Vn.), viola (Va.), cello (Vc.), double bass (D.B.), flute (Fl.), oboe
(Ob.), clarinet (Cl.), saxphone (Sax.), and trumpet (Tp.).

more challenging for pieces with a high polyphony. In
our experiments, the proposed approach successfully out-
puts the correct association for 18 of the 19 pieces, yield-
ing a success rate of 94.7%. This outperforms our previ-
ous method [11] whose accuracy was 89.5% on the same
pieces. Among the 19 pieces, there are in total 65 individ-
ual sources, and 63 of them (96.9%) are associated with
the correct player, while in our previous system only 58
sources are correct.

Table 1 lists the association results on all of the testing
pieces. For each piece, we show the number of correctly
associated sources and the rank of correct association among
all permutations. The proposed approach only fails gen-
tly on one piece (No. 8), where the correct association is
ranked the second. This failure case is a trio containing a
clarinet while the two string instruments are always play-
ing plucking notes, for which vibrato is not generally used.

The main reason that the proposed approach outperforms
our previous system [11] on this dataset, as we stated in the
introduction, is that the vibrato analysis provides more reli-
able cues for association than the note onset analysis in our
previous system. Vibrato, if present, often occurs through-
out a note; Vibrato patterns of different players are also dis-
tinct even if they are playing notes with the same rhythm.
We have to admit that for performances that vibrato is not
used, the proposed approach would fail. Nonetheless, it
provides a complementary approach to our previous sys-
tem and combining these two approaches is a future direc-
tion of research.

5. CONCLUSIONS

We proposed a methodology for source association by syn-
ergistic analyses of vibrato articulations from both audio
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and video modalities for string ensembles. Specifically,
we found that the fine-grained motion of the fingering hand
shows a strong correlation with the pitch fluctuation of vi-
brato notes, which was utilized to solve source association
in a score-informed fashion. Experiments showed a high
success rate on pieces of different polyphony, and proved
that vibrato features provide more robust cues for source
association than bowing motion features that were utilized
in our previous work. This technique enables novel and
richer music enjoyment experiences that allow users to iso-
late/enhance sound sources by selecting the players in the
video. For future work, we would like to combine the vi-
brato cues and the bowing cues to achieve more robust as-
sociation results. We also would like to explore scenarios
where the score is not available.
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