
SAMPLE-LEVEL DEEP CONVOLUTIONAL NEURAL NETWORKS FOR
MUSIC AUTO-TAGGING USING RAW WAVEFORMS

Jongpil Lee Jiyoung Park Keunhyoung Luke Kim Juhan Nam
Korea Advanced Institute of Science and Technology (KAIST)

[richter, jypark527, dilu, juhannam]@kaist.ac.kr

ABSTRACT

Recently, the end-to-end approach that learns hierarchi-
cal representations from raw data using deep convolutional
neural networks has been successfully explored in the im-
age, text and speech domains. This approach was applied
to musical signals as well but has been not fully explored
yet. To this end, we propose sample-level deep convolu-
tional neural networks which learn representations from
very small grains of waveforms (e.g. 2 or 3 samples) be-
yond typical frame-level input representations. Our exper-
iments show how deep architectures with sample-level fil-
ters improve the accuracy in music auto-tagging and they
provide results comparable to previous state-of-the-art per-
formances for the Magnatagatune dataset and Million Song
Dataset. In addition, we visualize filters learned in a sample-
level DCNN in each layer to identify hierarchically learned
features and show that they are sensitive to log-scaled fre-
quency along layer, such as mel-frequency spectrogram
that is widely used in music classification systems.

1. INTRODUCTION

In music information retrieval (MIR) tasks, raw waveforms
of music signals are generally converted to a time-frequency
representation and used as input to the system. The ma-
jority of MIR systems use a log-scaled representation in
frequency such as mel-spectrograms and constant-Q trans-
forms and then compress the amplitude with a log scale.
The time-frequency representations are often transformed
further into more compact forms of audio features depend-
ing on the task. All of these processes are designed based
on acoustic knowledge or engineering efforts.

Recent advances in deep learning, especially the devel-
opment of deep convolutional neural networks (DCNN),
made it possible to learn the entire hierarchical represen-
tations from the raw input data, thereby minimizing the
input data processing by hands. This end-to-end hierar-
chical learning was attempted early in the image domain,
particularly since the DCNN achieves break-through re-
sults in image classification [1]. These days, the method of
stacking small filters (e.g. 3x3) is widely used after it has
been found to be effective in learning more complex hier-
archical filters while conserving receptive fields [2]. In the

Copyright: c© 2017 Jongpil Lee et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

text domain, the language model typically consists of two
steps: word embedding and word-level learning. While
word embedding plays a very important role in language
processing [3], it has limitations in that it is learned inde-
pendently from the system. Recent work using CNNs that
take character-level text as input showed that the end-to-
end learning approach can yield comparable results to the
word-level learning system [4, 5]. In the audio domain,
learning from raw audio has been explored mainly in the
automatic speech recognition task [6–10]. They reported
that the performance can be similar to or even superior to
that of the models using spectral-based features as input.

This end-to-end learning approach has been applied to
music classification tasks as well [11, 12]. In particular,
Dieleman and Schrauwen used raw waveforms as input of
CNN models for music auto-tagging task and attempted to
achieve comparable results to those using mel-spectrograms
as input [11]. Unfortunately, they failed to do so and at-
tributed the result to three reasons. First, their CNN mod-
els were not sufficiently expressive (e.g. a small number of
layers and filters) to learn the complex structure of poly-
phonic music. Second, they could not find an appropriate
non-linearity function that can replace the log-based am-
plitude compression in the spectrogram. Third, the bottom
layer in the networks takes raw waveforms in frame-level
which are typically several hundred samples long. The
filters in the bottom layer should learn all possible phase
variations of periodic waveforms which are likely to be
prevalent in musical signals. The phase variations within a
frame (i.e. time shift of periodic waveforms) are actually
removed in the spectrogram.

In this paper, we address these issues with sample-level
DCNN. What we mean by “sample-level” is that the fil-
ter size in the bottom layer may go down to several sam-
ples long. We assume that this small granularity is anal-
ogous to pixel-level in image or character-level in text.
We show the effectiveness of the sample-level DCNN in
music auto-tagging task by decreasing strides of the first
convolutional layer from frame-level to sample-level and
accordingly increasing the depth of layers. Our exper-
iments show that the depth of architecture with sample-
level filters is proportional to the accuracy and also the ar-
chitecture achieves results comparable to previous state-of-
the-art performances for the MagnaTagATune dataset and
the Million Song Dataset. In addition, we visualize filters
learned in the sample-level DCNN.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-220

http://creativecommons.org/licenses/by/3.0/

Frame-level mel-spectrogram model

Mel-spectrogram extraction

Frame-level raw waveform model

Frame-level strided convolution layer

Sample-level raw waveform model

Sample-level strided convolution layer

Figure 1. Simplified model comparison of frame-level approach using mel-spectrogram (left), frame-level approach using
raw waveforms (middle) and sample-level approach using raw waveforms (right).

2. RELATED WORK

Since audio waveforms are one-dimensional data, previous
work that takes waveforms as input used a CNN that con-
sists of one-dimensional convolution and pooling stages.
While the convolution operation and filter length in upper
layers are usually similar to those used in the image do-
main, the bottom layer that takes waveform directly con-
ducted a special operation called strided convolution, which
takes a large filter length and strides it as much as the filter
length (or the half). This frame-level approach is compa-
rable to hopping windows with 100% or 50% hop size in a
short-time Fourier transform. In many previous works, the
stride and filter length of the first convolution layer was set
to 10-20 ms (160-320 samples at 16 kHz audio) [8,10–12].

In this paper, we reduce the filter length and stride of
the first convolution layer to the sample-level, which can
be as small as 2 samples. Accordingly, we increase the
depth of layers in the CNN model. There are some works
that use 0.6 ms (10 samples at 16 kHz audio) as a stride
length [6, 7], but they used a CNN model only with three
convolution layers, which is not sufficient to learn the com-
plex structure of musical signals.

3. LEARNING MODELS

Figure 1 illustrates three CNN models in the music auto-
tagging task we compare in our experiments. In this sec-
tion, we describe the three models in detail.

3.1 Frame-level mel-spectrogram model

This is the most common CNN model used in music auto-
tagging. Since the time-frequency representation is two
dimensional data, previous work regarded it as either two-
dimensional images or one-dimensional sequence of vec-
tors [11,13–15]. We only used one-dimensional(1D) CNN
model for experimental comparisons in our work because
the performance gap between 1D and 2D models is not sig-
nificant and 1D model can be directly compared to models
using raw waveforms.

3.2 Frame-level raw waveform model

In the frame-level raw waveform model, a strided con-
volution layer is added beneath the bottom layer of the
frame-level mel-spectrogram model. The strided convo-
lution layer is expected to learn a filter-bank representation
that correspond to filter kernels in a time-frequency rep-
resentation. In this model, once the raw waveforms pass
through the first strided convolution layer, the output fea-
ture map has the same dimensions as the mel-spectrogram.
This is because the stride, filter length, and number of fil-
ters of the first convolution layer correspond to the hop
size, window size, and number of mel-bands in the mel-
spectrogram, respectively. This configuration was used for
music auto-tagging task in [11, 12] and so we used it as a
baseline model.

3.3 Sample-level raw waveform model

As described in Section 1, the approach using the raw wave-
forms should be able to address log-scale amplitude com-
pression and phase-invariance. Simply adding a strided
convolution layer is not sufficient to overcome the prob-
lems. To improve this, we add multiple layers beneath the
frame-level such that the first convolution layer can han-
dle much smaller length of samples. For example, if the
stride of the first convolution layer is reduced from 729
(= 36) to 243 (= 35), 3-size convolution layer and max-
pooling layer are added to keep the output dimensions in
the subsequent convolution layers unchanged. If we re-
peatedly reduce the stride of the first convolution layer this
way, six convolution layers (five pairs of 3-size convolution
and max-pooling layer following one 3-size strided convo-
lution layer) will be added (we assume that the temporal
dimensionality reduction occurs only through max-pooling
and striding while zero-padding is used in convolution to
preserve the size). We describe more details on the config-
uration strategy of sample-level CNN model in the follow-
ing section.

3.4 Model Design

Since the length of an audio clip is variable in general, the
following issues should be considered when configuring
the temporal CNN architecture:

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-221

• Convolution filter length and sub-sampling length

• The temporal length of hidden layer activations on
the last sub-sampling layer

• The segment length of audio that corresponds to the
input size of the network

First, we attempted a very small filter length in convolu-
tional layers and sub-sampling length, following the VGG
net that uses filters of 3× 3 size and max-pooling of 2× 2
size [2]. Since we use one-dimensional convolution and
sub-sampling for raw waveforms, however, the filter length
and pooling length need to be varied. We thus constructed
several DCNN models with different filter length and pool-
ing length from 2 to 5, and verified the effect on music
auto-tagging performance. As a sub-sampling method, max-
pooling is generally used. Although sub-sampling using
strided convolution has recently been proposed in a gen-
erative model [9], our preliminary test showed that max-
pooling was superior to the stride sub-sampling method. In
addition, to avoid exhausting model search, a pair of sin-
gle convolution layer and max-pooling layer with the same
size was used as a basic building module of the DCNN.

Second, the temporal length of hidden layer activations
on the last sub-sampling layer reflects the temporal com-
pression of the input audio by successive sub-sampling.
We set the CNN models such that the temporal length of
hidden layer activation is one. By building the models this
way, we can significantly reduce the number of parameters
between the last sub-sampling layer and the output layer.
Also, we can examine the performance only by the depth
of layers and the stride of first convolution layer.

Third, in music classification tasks, the input size of the
network is an important parameter that determines the clas-
sification performance [16, 17]. In the mel-spectrogram
model, one song is generally divided into small segments
with 1 to 4 seconds. The segments are used as the input for
training and the predictions over all segments in one song
are averaged in testing. In the models that use raw wave-
form, the learning ability according to the segment size has
been not reported yet and thus we need to examine differ-
ent input sizes when we configure the CNN models.

Considering all of these issues, we construct mn-DCNN
models where m refers to the filter length and pooling length
of intermediate convolution layer modules and n refers to
the number of the modules (or depth). An example of mn-
DCNN models is shown in Table 1 where m is 3 and n is
9. According to the definition, the filter length and pool-
ing length of the convolution layer are 3 other than the first
strided convolution layer. If the hop size (stride length) of
the first strided convolution layer is 3, the time-wise output
dimension of the convolution layer becomes 19683 when
the input of the network is 59049 samples. We call this “39

model with 19683 frames and 59049 samples as input”.

4. EXPERIMENTAL SETUP

In this section, we introduce the datasets used in our exper-
iments and describe experimental settings.

39 model, 19683 frames
59049 samples (2678 ms) as input

layer stride output # of params

conv 3-128 3 19683× 128 512

conv 3-128
maxpool 3

1
3

19683× 128
6561× 128

49280

conv 3-128
maxpool 3

1
3

6561× 128
2187× 128

49280

conv 3-256
maxpool 3

1
3

2187× 256
729× 256

98560

conv 3-256
maxpool 3

1
3

729× 256
243× 256

196864

conv 3-256
maxpool 3

1
3

243× 256
81× 256

196864

conv 3-256
maxpool 3

1
3

81× 256
27× 256

196864

conv 3-256
maxpool 3

1
3

27× 256
9× 256

196864

conv 3-256
maxpool 3

1
3

9× 256
3× 256

196864

conv 3-512
maxpool 3

1
3

3× 512
1× 512

393728

conv 1-512
dropout 0.5

1
−

1× 512
1× 512

262656

sigmoid − 50 25650

Total params 1.9× 106

Table 1. Sample-level CNN configuration. For example,
in the layer column, the first 3 of “conv 3-128” is the filter
length, 128 is the number of filters, and 3 of “maxpool 3”
is the pooling length.

4.1 Datasets

We evaluate the proposed model on two datasets, Mag-
naTagATune dataset (MTAT) [18] and Million Song Dataset
(MSD) annotated with the Last.FM tags [19]. We primar-
ily examined the proposed model on MTAT and then veri-
fied the effectiveness of our model on MSD which is much
larger than MTAT 1 . We filtered out the tags and used most
frequently labeled 50 tags in both datasets, following the
previous work [11], [14, 15] 2 . Also, all songs in the two
datasets were trimmed to 29.1 second long and resampled
to 22050 Hz as needed. We used AUC (Area Under Re-
ceiver Operating Characteristic) as a primary evaluation
metric for music auto-tagging.

1 MTAT contains 170 hours long audio and MSD contains 1955 hours
long audio in total

2 https://github.com/keunwoochoi/MSD_split_for_
tagging

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-222

https://github.com/keunwoochoi/MSD_split_for_tagging
https://github.com/keunwoochoi/MSD_split_for_tagging

2n models

model with 16384 samples (743 ms) as input model with 32768 samples (1486 ms) as input

model n layer filter length & stride AUC model n layer filter length & stride AUC

64 frames 6 1+6+1 256 0.8839 128 frames 7 1+7+1 256 0.8834
128 frames 7 1+7+1 128 0.8899 256 frames 8 1+8+1 128 0.8872
256 frames 8 1+8+1 64 0.8968 512 frames 9 1+9+1 64 0.8980
512 frames 9 1+9+1 32 0.8994 1024 frames 10 1+10+1 32 0.8988

1024 frames 10 1+10+1 16 0.9011 2048 frames 11 1+11+1 16 0.9017
2048 frames 11 1+11+1 8 0.9031 4096 frames 12 1+12+1 8 0.9031
4096 frames 12 1+12+1 4 0.9036 8192 frames 13 1+13+1 4 0.9039
8192 frames 13 1+13+1 2 0.9032 16384 frames 14 1+14+1 2 0.9040

3n models

model with 19683 samples (893 ms) as input model with 59049 samples (2678 ms) as input

model n layer filter length & stride AUC model n layer filter length & stride AUC

27 frames 3 1+3+1 729 0.8655 81 frames 4 1+4+1 729 0.8655
81 frames 4 1+4+1 243 0.8753 243 frames 5 1+5+1 243 0.8823
243 frames 5 1+5+1 81 0.8961 729 frames 6 1+6+1 81 0.8936
729 frames 6 1+6+1 27 0.9012 2187 frames 7 1+7+1 27 0.9002

2187 frames 7 1+7+1 9 0.9033 6561 frames 8 1+8+1 9 0.9030
6561 frames 8 1+8+1 3 0.9039 19683 frames 9 1+9+1 3 0.9055

4n models

model with 16384 samples (743 ms) as input model with 65536 samples (2972 ms) as input

model n layer filter length & stride AUC model n layer filter length & stride AUC

64 frames 3 1+3+1 256 0.8828 256 frames 4 1+4+1 256 0.8813
256 frames 4 1+4+1 64 0.8968 1024 frames 5 1+5+1 64 0.8950

1024 frames 5 1+5+1 16 0.9010 4096 frames 6 1+6+1 16 0.9001
4096 frames 6 1+6+1 4 0.9021 16384 frames 7 1+7+1 4 0.9026

5n models

model with 15625 samples (709 ms) as input model with 78125 samples (3543 ms) as input

model n layer filter length & stride AUC model n layer filter length & stride AUC

125 frames 3 1+3+1 125 0.8901 625 frames 4 1+4+1 125 0.8870
625 frames 4 1+4+1 25 0.9005 3125 frames 5 1+5+1 25 0.9004

3125 frames 5 1+5+1 5 0.9024 15625 frames 6 1+6+1 5 0.9041

Table 2. Comparison of various mn-DCNN models with different input sizes. m refers to the filter length and pooling length
of intermediate convolution layer modules and n refers to the number of the modules. Filter length & stride indicates the
value of the first convolution layer. In the layer column, the first digit ’1’ of 1+n+1 is the strided convolution layer, and the
last digit ’1’ is convolution layer which actually works as a fully-connected layer.

4.2 Optimization

We used sigmoid activation for the output layer and bi-
nary cross entropy loss as the objective function to opti-
mize. For every convolution layer, we used batch normal-
ization [20] and ReLU activation. We should note that, in
our experiments, batch normalization plays a vital role in
training the deep models that takes raw waveforms. We
applied dropout of 0.5 to the output of the last convolution
layer and minimized the objective function using stochas-
tic gradient descent with 0.9 Nesterov momentum. The
learning rate was initially set to 0.01 and decreased by a
factor of 5 when the validation loss did not decrease more
than 3 epochs. A total decrease of 4 times, the learning rate
of the last training was 0.000016. Also, we used batch size

of 23 for MTAT and 50 for MSD, respectively. In the mel-
spectrogram model, we conducted the input normalization
simply by dividing the standard deviation after subtracting
mean value of entire input data. On the other hand, we did
not perform the input normalization for raw waveforms.

5. RESULTS

In this section, we examine the proposed models and com-
pare them to previous state-of-the-art results.

5.1 mn-DCNN models

Table 2 shows the evaluation results for the mn-DCNN
models on MTAT for different input sizes, number of lay-
ers, filter length and stride of the first convolution layer. As

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-223

3n models,
59049 samples

as input
n

window
(filter length)

hop
(stride) AUC

Frame-level
(mel-spectrogram)

4 729 729 0.9000
5 729 243 0.9005
5 243 243 0.9047
6 243 81 0.9059
6 81 81 0.9025

Frame-level
(raw waveforms)

4 729 729 0.8655
5 729 243 0.8742
5 243 243 0.8823
6 243 81 0.8906
6 81 81 0.8936

Sample-level
(raw waveforms)

7 27 27 0.9002
8 9 9 0.9030
9 3 3 0.9055

Table 3. Comparison of three CNN models with differ-
ent window (filter length) and hop (stride) sizes. n rep-
resents the number of intermediate convolution and max-
pooling layer modules, thus 3n times hop (stride) size of
each model is equal to the number of input samples.

input type model MTAT MSD

Frame-level
(mel-spectrogram)

Persistent CNN [21] 0.9013 -
2D CNN [14] 0.894 0.851
CRNN [15] - 0.862

Proposed DCNN 0.9059 -

Frame-level
(raw waveforms) 1D CNN [11] 0.8487 -

Sample-level
(raw waveforms) Proposed DCNN 0.9055 0.8812

Table 4. Comparison of our works to prior state-of-the-arts

described in Section 3.4, m refers to the filter length and
pooling length of intermediate convolution layer modules
and n refers to the number of the modules. In Table 2,
we can first find that the accuracy is proportional to n for
most m. Increasing n given m and input size indicates that
the filter length and stride of the first convolution layer be-
come closer to the sample-level (e.g. 2 or 3 size). When the
first layer reaches the small granularity, the architecture is
seen as a model constructed with the same filter length and
sub-sampling length in all convolution layers as depicted
in Table 1. The best results were obtained when m was 3
and n was 9. Interestingly, the length of 3 corresponds to
the 3-size spatial filters in the VGG net [2]. In addition, we
can see that 1-3 seconds of audio as an input length to the
network is a reasonable choice in the raw waveform model
as in the mel-spectrogram model.

5.2 Mel-spectrogram and raw waveforms

Considering that the output size of the first convolution
layer in the raw waveform models is equivalent to the mel-
spectrogram size, we further validate the effectiveness of

the proposed sample-level architecture by performing ex-
periments presented in Table 3. The models used in the
experiments follow the configuration strategy described in
Section 3.4. In the mel-spectrogram experiments, 128 mel-
bands are used to match up to the number of filters in the
first convolution layer of the raw waveform model. FFT
size was set to 729 in all comparisons and the magnitude
compression is applied with a nonlinear curve, log(1 +
C|A|) where A is the magnitude and C is set to 10.

The results in Table 3 show that the sample-level raw
waveform model achieves results comparable to the frame-
level mel-spectrogram model. Specifically, we found that
using a smaller hop size (81 samples ≈ 4 ms) worked bet-
ter than those of conventional approaches (about 20 ms or
so) in the frame-level mel-spectrogram model. However,
if the hop size is less than 4 ms, the performance degraded.
An interesting finding from the result of the frame-level
raw waveform model is that when the filter length is larger
than the stride, the accuracy is slightly lower than the mod-
els with the same filter length and stride. We interpret that
this result is due to the learning ability of the phase vari-
ance. As the filter length decreases, the extent of phase
variance that the filters should learn is reduced.

5.3 MSD result and the number of filters

We investigate the capacity of our sample-level architec-
ture even further by evaluating the performance on MSD
that is ten times larger than MTAT. The result is shown in
Table 4. While training the network on MSD, the number
of filters in the convolution layers has been shown to affect
the performance. According to our preliminary test results,
increasing the number of filters from 16 to 512 along the
layers was sufficient for MTAT. However, the test on MSD
shows that increasing the number of filters in the first con-
volution layer improves the performance. Therefore, we
increased the number of filters in the first convolution layer
from 16 to 128.

5.4 Comparison to state-of-the-arts

In Table 4, we show the performance of the proposed ar-
chitecture to previous state-of-the-arts on MTAT and MSD.
They show that our proposed sample-level architecture is
highly effective compared to them.

5.5 Visualization of learned filters

The technique of visualizing the filters learned at each layer
allows better understanding of representation learning in
the hierarchical network. However, many previous works
in music domain are limited to visualizing learned filters
only on the first convolution layer [11, 12].

The gradient ascent method has been proposed for filter
visualization [22] and this technique has provided deeper
understanding of what convolutional neural networks learn
from images [23, 24]. We applied the technique to our
DCNN to observe how each layer hears the raw wave-
forms. The gradient ascent method is as follows. First, we
generate random noise and back-propagate the errors in the
network. The loss is set to the target filter activation. Then,

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-224

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Figure 2. Spectrum of the filters in the sample-level convolution layers which are sorted by the frequency of the peak
magnitude. The x-axis represents the index of the filter, and the y-axis represents the frequency. The model used for
visualization is 39-DCNN with 59049 samples as input. Visualization was performed using the gradient ascent method to
obtain the input waveform that maximizes the activation of a filter in the layers. To effectively find the filter characteristics,
we set the input waveform estimate to 729 samples which is close to a typical frame size.

we add the bottom gradients to the input with gradient nor-
malization. By repeating this process several times, we can
obtain the waveform that maximizes the target filter activa-
tion. Examples of learned filters at each layer are in Figure
3. Although we can find the patterns that low-frequency
filters are more visible along the layer, estimated filters are
still noisy. To show the patterns more clearly, we visual-
ized them as spectrum in the frequency domain and sorted
them by the frequency of the peak magnitude.

Note that we set the input waveform estimate to 729 sam-
ples in length because, if we initialize and back-propagate
to the whole input size of the networks, the estimated filters
will have large dimensions such as 59049 samples in com-
puting spectrum. Thus, we used the smaller input samples
which can find the filter characteristics more effectively
and also are close to a typical frame size in spectrum.

The layer 1 shows the three distinctive filter bands which
are possible with the filter length with 3 samples (say, a
DFT size of 3). The center frequency of the filter banks
increases linearly in low frequency filter banks but it be-
comes non-linearly steeper in high frequency filter banks.
This trend becomes stronger as the layer goes up. This
nonlinearity was found in learned filters with a frame-level
end-to-end learning [11] and also in perceptual pitch scales
such as mel or bark.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed sample-level DCNN models
that take raw waveforms as input. Through our experi-
ments, we showed that deeper models (more than 10 lay-
ers) with a very small sample-level filter length and sub-
sampling length are more effective in the music auto-tagging
task and the results are comparable to previous state-of-
the-art performances on the two datasets. Finally, we vi-
sualized hierarchically learned filters. As future work, we
will analyze why the deep sample-level architecture works
well without input normalization and nonlinear function
that compresses the amplitude and also investigate the hi-
erarchically learned filters more thoroughly.

Figure 3. Examples of learned filters at each layer.

Acknowledgments

This work was supported by Korea Advanced Institute of
Science and Technology (project no. G04140049) and Na-
tional Research Foundation of Korea (project no. N01160463).

7. REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Advances in neural information processing
systems, 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean, “Distributed representations of words
and phrases and their compositionality,” in Advances
in neural information processing systems, 2013, pp.
3111–3119.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-225

[4] X. Zhang, J. Zhao, and Y. LeCun, “Character-level
convolutional networks for text classification,” in Ad-
vances in neural information processing systems, 2015,
pp. 649–657.

[5] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush,
“Character-aware neural language models,” arXiv
preprint arXiv:1508.06615, 2015.

[6] D. Palaz, M. M. Doss, and R. Collobert, “Convolu-
tional neural networks-based continuous speech recog-
nition using raw speech signal,” in IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 2015, pp. 4295–4299.

[7] D. Palaz, R. Collobert et al., “Analysis of cnn-based
speech recognition system using raw speech as input,”
Idiap, Tech. Rep., 2015.

[8] R. Collobert, C. Puhrsch, and G. Synnaeve,
“Wav2letter: an end-to-end convnet-based speech
recognition system,” arXiv preprint arXiv:1609.03193,
2016.

[9] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “Wavenet: A generative model for
raw audio,” CoRR abs/1609.03499, 2016.

[10] T. N. Sainath, R. J. Weiss, A. W. Senior, K. W. Wilson,
and O. Vinyals, “Learning the speech front-end with
raw waveform cldnns.” in INTERSPEECH, 2015, pp.
1–5.

[11] S. Dieleman and B. Schrauwen, “End-to-end learning
for music audio,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2014, pp. 6964–6968.

[12] D. Ardila, C. Resnick, A. Roberts, and D. Eck, “Audio
deepdream: Optimizing raw audio with convolutional
networks.”

[13] J. Pons, T. Lidy, and X. Serra, “Experimenting with
musically motivated convolutional neural networks,” in
IEEE International Workshop on Content-Based Mul-
timedia Indexing (CBMI), 2016, pp. 1–6.

[14] K. Choi, G. Fazekas, and M. Sandler, “Automatic tag-
ging using deep convolutional neural networks,” in
Proceedings of the 17th International Conference on
Music Information Retrieval (ISMIR), 2016, pp. 805–
811.

[15] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Convo-
lutional recurrent neural networks for music classifica-
tion,” arXiv preprint arXiv:1609.04243, 2016.

[16] P. Hamel, S. Lemieux, Y. Bengio, and D. Eck, “Tem-
poral pooling and multiscale learning for automatic an-
notation and ranking of music audio,” in Proceedings
of the 12th International Conference on Music Infor-
mation Retrieval (ISMIR), 2011.

[17] J. Lee and J. Nam, “Multi-level and multi-scale fea-
ture aggregation using pre-trained convolutional neu-
ral networks for music auto-tagging,” arXiv preprint
arXiv:1703.01793, 2017.

[18] E. Law, K. West, M. I. Mandel, M. Bay, and J. S.
Downie, “Evaluation of algorithms using games: The
case of music tagging,” in ISMIR, 2009, pp. 387–392.

[19] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and
P. Lamere, “The million song dataset,” in Proceedings
of the 12th International Conference on Music Infor-
mation Retrieval (ISMIR), vol. 2, no. 9, 2011, pp. 591–
596.

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accel-
erating deep network training by reducing internal co-
variate shift,” arXiv preprint arXiv:1502.03167, 2015.

[21] J.-Y. Liu, S.-K. Jeng, and Y.-H. Yang, “Apply-
ing topological persistence in convolutional neural
network for music audio signals,” arXiv preprint
arXiv:1608.07373, 2016.

[22] D. Erhan, Y. Bengio, A. Courville, and P. Vincent,
“Visualizing higher-layer features of a deep network,”
University of Montreal, vol. 1341, p. 3, 2009.

[23] M. D. Zeiler and R. Fergus, “Visualizing and under-
standing convolutional networks,” in European confer-
ence on computer vision. Springer, 2014, pp. 818–
833.

[24] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural
networks are easily fooled: High confidence predic-
tions for unrecognizable images,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 427–436.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-226

