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ABSTRACT

Deep learning approaches have become increasingly pop-
ular in estimating time-frequency masks for audio source
separation. However, training neural networks usually re-
quires a considerable amount of data. Music data is scarce,
particularly for the task of classical music source separa-
tion, where we need multi-track recordings with isolated
instruments. In this work, we depart from the assumption
that all the renditions of a piece are based on the same mu-
sical score, and we can generate multiple renditions of the
score by synthesizing it with different performance proper-
ties, e.g. tempo, dynamics, timbre and local timing varia-
tions. We then use this data to train a convolutional neural
network (CNN) which can separate with low latency all the
renditions of a score or a set of scores. The trained model
is tested on real life recordings and is able to effectively
separate the corresponding sources. This work follows the
principle of research reproducibility, providing related data
and code, and can be extended to separate other pieces.

1. INTRODUCTION

Source separation assumes recovering the sources of the
signals from a mixture. For audio applications the two
main areas are speech enhancement or recognition, and
separation of musical sources [1]. Regarding the latter,
it allows for a range of interesting applications such as
remixing, up-mixing or 3D concerts using VR technolo-
gies [2].

In this paper, we study the case of low latency monaural
source separation of classical music recordings, where our
goal is to extend the instrument enhancement applications
developed during the PHENICX project [3, 4] to a low la-
tency scenario, e.g. video streaming applications. In this
scenario, we need to provide real-time source separation
during a music concert, allowing the listener to focus on
specific musical instruments. For that, we can benefit from
previous information about the target piece and meta-data
associated with it.

In this context, we assume that the sources are har-
monic, playing harmonically and rhythmically related
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phrases, highly correlated in time and frequency which is
a challenging scenario if compared to separating between
pitched instruments and drums [5]. However, we rely on
the assumption that the instruments for a given musical
piece are known in advance, and one can include timbre
information to guide the separation. This scenario is com-
monly known as timbre-informed source separation [6].

Matrix decomposition techniques have been traditionally
used for timbre-informed music source separation. In the
case of Non-negative matrix factorization (NMF), instru-
ments are assigned a set of timbre basis which are previ-
ously learned and kept fixed during the separation stage
[6]. Although successful, informed NMF approaches are
computationally intensive, which makes them difficult to
use in a low latency scenario.

Data-driven approaches using deep neural networks in-
volve learning binary or soft masks corresponding to the
target sources [7–11]. Moreover, a neural network frame-
work can process short audio windows in streaming in a
causal manner which makes these systems suitable for low-
latency applications. Furthermore, compared to the NMF,
neural networks such as convolutional neural networks or
recurrent neural networks have the advantage of modeling
the temporal context.

For the source separation approaches based on deep learn-
ing, the timbres corresponding to the instruments are learned
from multi-microphone tracks. These approaches usually
require large amounts of training data, which is scarce for
music source separation. In addition, obtaining training
data for classical music in form of real-life recordings is
difficult because the mixtures should be based on isolated
recordings [4, 12, 13]. However, as the classical music
repertory has been traditionally assembled with scores, train-
ing data can be generated by synthesizing a target score
according to several performance factors comprising (and
not limited to) tempo, dynamics, timbre of the instruments,
and synchronization between musicians, which induce lo-
cal timing variations. The principle guiding the present
study is that these factors differentiate between various ren-
ditions and characterize musical performances [14], and
training a neural network with such synthetic data gener-
ates a more robust model which can be used to separate
real-life renditions.

As various classical music pieces are played by differ-
ent instruments and neural networks architectures are not
flexible in accommodating a variable number of sources,
it is not possible to train an universal model for classical
music. Traditionally, in a timbre-informed case, models
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Figure 1. Proposed separation system

are trained for a fixed combinations of instruments [7–11].
For classical music, we constrain the timbre-informed sys-
tem to the possible combinations of notes and instruments
which exist in a set of scores which have the same instru-
ments. We denote this case as score-constrained source
separation. This is a more general case than score-informed
source separation [15], as score is used solely during the
training phase to synthesize renditions.

We propose a timbre-informed and score-constrained sys-
tem to train neural networks for monaural source separa-
tion of classical music mixtures. We generate training data
through synthesis of a set of scores by considering the fol-
lowing factors: tempo, timbre, dynamics and circular shift-
ing (local timing variations). In addition, we extend the
timbre-informed low latency system we proposed in [11]
to the case of score-constrained classical music source sep-
aration. As argued in [11], the model we use has consider-
able less parameters, is easier to train, and can be used in a
low latency scenario. We evaluate several training scenar-
ios on Bach chorales pieces played by four instruments.

The remainder of this paper is structured as follows. In
Section 2 we discuss the relation of the proposed method
with the previous work. We present the architecture of the
neural network in Section 3.1, the parameter learning in
Section 3.2, the data processing in Section 3.3, and the
proposed approaches for generating training data in Sec-
tion 3.4. The evaluation dataset, method, parameters and
results are discussed in Section 4. We conclude with an
outlook on the presented system in Section 5.

2. RELATION TO PREVIOUS WORK

As mentioned before, training NMF basis for source sep-
aration is carried out either by score synthesis [13, 16] or
by analytic approaches which assume learning registers for
all considered instruments [6, 15]. In a similar way, we
can synthesize the desired pieces or use samples for notes
to train a neural network. However, in contrast to NMF,
we need to train the network with examples containing the
mixtures along with the targeted sources which cover pos-
sible cases one might encounter in real-life or in the test
dataset. In addition, a deep learning model is optimized
and heavily dependent on the training data and needs to
cover more examples at the training stage than the para-

metric approaches embodied by NMF.
As a solution to data scarcity and to improve generaliza-

tion and robustness, deep learning systems rely on data
augmentation techniques by applying transformations to
the existing data [17, 18]. Choosing realistic transforma-
tions depends on the possible axes on which data varies
and on the task, e.g. pitch shifting, time stretching, loud-
ness, randomly mixing different recordings or background
noise. Although our approach can be seen as a data aug-
mentation strategy, we generate new data according to trans-
formations that make more sense for source separation, in-
stead of augmenting existing data with techniques popular
in other classification tasks [17, 18]. Furthermore, except
circular shifting [7], we use different transformations than
previous deep learning approaches. We consider music
samples played with different dynamics and by different
instruments (timbre), which is different than simply chang-
ing the loudness or the amplitude of a sample. Addition-
ally, we mix the audio files and not the resulting spectro-
grams to account for phase cancellation.

Besides [10], deep learning approaches are evaluated in a
cross-validation manner [7, 9, 11]. However, we claim that
due to the small size of the classical music datasets used
for evaluation, these methods are more likely to perform
poorly in real-life scenarios where we can have different
tempos, timbre, or dynamics. Therefore, varying training
data with these factors adds robustness.

3. METHOD

The diagram for the proposed system is depicted in Figure
1. For the training stage, we depart from the score of a
given piece which we synthesize at various combinations
of tempos, timbres and dynamics. We then generate addi-
tional data by mixing circular shifted versions of the audio
tracks for the corresponding sources. More details on data
generation are given in Section 3.4.

3.1 Network architecture

The convolutional neural network (CNN) used in this pa-
per is a variation of the one we formulated in [11] and com-
prises two convolutional layers, a dense ”bottleneck” layer
having a low number of units, a second dense layer fol-
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lowed by the inverse of the first two layers for each of the
target sources. We kept similar filter shapes in order to pre-
serve a low number of parameters and the low latency of
the model.

The input of the network is a STFT magnitude spectro-
gram X ∈ RTF , where T is the number of time frames
(the time context modeled) and F is the number of fre-
quency bins. This input is passed through a vertical convo-
lution layer comprising P1 = 30 filters of size (1, 30) with
stride 5, thus yielding the output X1 ∈ RP1TF1 , where
F1 = (F − 30)/5 + 1. Then, we have a horizontal con-
volution comprising P2 = 30 filters of size ( 23 · T, 1) with
stride 1 which yields the output X2 ∈ RP2T2F1 , where
T2 = (T − 2

3 · T )/1+ 1. This layer is followed by a dense
”bottleneck” layer of size F3 = 256, which has an input of
size P2 · T2 · F1.

As we need to reconstruct the output for each of the sources
j = 1 : J , where J is the total number of separated
sources, we perform the inverse operations for the horizon-
tal and the vertical convolutions. To match the dimensions
needed to compute the inverse of the second layer, we need
to create a dense layer of size P2 · T2 ·F1 features for each
source, thus having J · P2 · T2 · F1 units. Consequentially,
for each of the estimated sources we perform the inverse
operation of the convolution layers, i.e. the deconvolution,
using the same parameters learned by these layers. The
final inverse layer yields a set of estimations Ej ∈ RTF ,
with j = 1 : J .

The convolutional layers have a linear activation function
and the dense ones a rectified linear unit activation func-
tion, as in [11].

3.2 Parameter learning

Similarly to [7,11], the network yields the estimations Ej ∈
RTF from which we derive the soft masks Mj ∈ RTF , for
each source j = 1 : J :

Mj =
|Ej|∑J
j=1 |Ej|

(1)

Then, the soft masks are multiplied with the original mag-
nitude spectrogram to obtain the corresponding estimated
magnitude spectrograms for the sources: X̂j = Mj ×X.

The parameters of the network are updated using mini-
batch Stochastic Gradient Descent with AdaDelta algorithm
[19] according to the following loss function which min-
imizes the Euclidean distance between the estimated X̂j

and target Xj sources: Loss =
∑J

j=1 ‖X̂j −Xj‖2
Because the target sources are harmonic, highly corre-

lated and playing consonant musical phrases, we do not in-
clude the dissimilarity cost between the sources as in [11].

3.3 Data processing

a) Training: Generating training data assumes slicing the
spectrograms of the mixture X(t, f) and the target spec-
trograms Xj(t, f) in overlapping blocks of size T , for the
time frames t = 1 : T̂ and frequency bins f = 1 : F ,
where T̂ is the total number of time frames and F is the

number of frequency bins of X. We summarize the proce-
dure in Algorithm 1.

Algorithm 1 Generating training data
1 for each piece in the training set do
2 Compute STFT of the piece
3 Initialize total number of blocks to B = T̂−T

O
, where O

is the step size.
4 for b=1:B do
5 Slice Xb = X(b ∗O : b ∗O + T, :)
6 Slice Xb

j = Xj(b ∗O : b ∗O + T, :)
7 end for
8 end for
9 Generate batches by randomly grouping blocks.

b) Separation: Separating a target signal involves slicing
a magnitude spectrogram. Then, we obtain an estimation
for the sources by feed forwarding the blocks through the
network, and we overlap-add the blocks to obtain the mag-
nitude spectrograms. The steps are presented in the Algo-
rithm 2.

Algorithm 2 Separation of a piece
1 Compute complex valued STFT; keep the phase.
2 Initialize total number of blocks to B = T̂−T

O
, where O is

the step size.
3 for b=1:B do
4 Slice Xb = X(b ∗O : b ∗O + T, :)
5 Feed-forward Xb through the CNN, obtaining the magni-

tude spectrograms X̂b
j , for the sources j = 1 : J .

6 end for
7 for j=1:J do
8 Compute X̂j by overlap-adding X̂b

j .
9 end for

10 Use the phase of the original signal and compute the esti-
mated sources with the inverse overlap-add STFT.

If we consider that the sources yj(t), j = 1 : J are lin-

early mixed, such that x(t) =
J∑

j=1

yj(t), then we can use

the original phase of the audio mixture to obtain the signals
associated to the sources yj(t), with an inverse overlap-add
STFT, as in [13].

3.4 Data generation

The proposed system is trained with data generated by syn-
thesizing a set of scores at different tempos, using samples
of different timbres and dynamics, and then applying circu-
lar shifting to the resulting audio files, to account for local
timing variations. In this paper, we consider four factors:
a) Tempo: The renditions of a classical music piece vary
in terms of tempo. Therefore, in order to make the model
more robust to variations in tempo, we synthesize the score
at different tempos, i.e. we adjust the note duration for
each note corresponding to each instrument in the score.
The possible tempo variations are represented in the vec-
tor a = {a1, a2, . . . , aA}, where A is the total number of
considered tempos.
b) Timbre: Different recording conditions, instruments,
players or playing styles can yield differences in timbre. A
single timbre variation comprises samples of the notes in
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the designated range of an instrument played by a different
musician and recorded in different conditions. All timbre
variations are stored in the vector c = {c1, c2, . . . , cC},
where C is the total number of timbre variations. Hence,
when synthesizing a note of a given instrument we can
choose between the c samples corresponding to a different
timbre.
c) Dynamics: The dynamics of a piece can change be-
tween renditions of a piece. Furthermore, variations in dy-
namics induce changes in loudness and timbre. Thus, we
synthesize using samples representing various levels of dy-
namics in order to make our model more robust to this vari-
able. The dynamics variations are represented in the vector
d = {d1, d2, . . . , dD}, where D is the dynamic range.
d) Circular shifting: In contrast to tempo changes which
account for global tempo variations, circular shifting ac-
counts for local timing variations. The synthetic pieces
lack human expressiveness or even small errors which one
might encounter in a real performance and for which we try
to account for using this transformation. Circular shifting
takes place after the synthesis of the audio and is applied
to each of the target sources. Considering an audio signal
of S samples, a circular shift is a permutation σ with Ŝ
samples such that σ(i) ≡ (i+ Ŝ) mod S, for all samples
i = 1 : S.

We can have various combinations between different shift-
ing steps for the sources. For each combination we gener-
ate a new mixture by summing up the circular shifted audio
tracks. The possible circular shifts are represented in the
vector e = {e1, e2, . . . , eE}, where E is the total number
of considered circular shifts.

The space comprising all possible combinations between
the considered variables and j = 1 : J target instruments
is the Cartesian product a× c× d× e× j, having in total
A·C·D·E·J possibilities. If the number of combinations is
too large and we can not generate all of them, we randomly
sample from the Cartesian space.

In the Algorithm 3 we detail the procedure used to gen-
erate a rendition, i.e. a multi-track recording comprising
audio vectors xj for each instrument j = 1 : J . We
depart from a given score which has a set of notes nj =
1 : Nj , where Nj is the total number of notes for in-
strument j. Then we synthesize each note considering a
given combination comprising a tempo â, a set timbres
ĉ = (ĉ1, . . . , ĉj), dynamics d̂ = (d̂1, . . . , d̂j) and circular
shifting ê = (ê1, . . . , êj) for each instrument j = 1 : J .

Algorithm 3 Generating a rendition from a score

1 Initialize the tempo â, timbre ĉ, dynamics d̂ and circular
shifting ê variables.

2 for j = 1 : J do
3 Initialize the audio vector xj

4 for each note nj = 1 : Nj do
5 Adjust the note duration in the score to the tempo â.
6 Query the database/audio engine for a sample of timbre

ĉj with the dynamics d̂j .
7 Synthesize the audio vector corresponding to the given

note nj and paste it in xj at the onset and offset times.
8 end for
9 Apply the circular shift êj to xj .

10 end for

4. EVALUATION

4.1 Datasets

For evaluation purposes we use ten Bach chorales from the
Bach10 dataset, played by bassoon, clarinet, saxophone,
violin, in the Bach10 dataset [12] which has been widely
used in the evaluation of source separation. Each piece
has a duration of ≈ 30 seconds and is accompanied by the
original score and a version of this score which is aligned
with the rendition.

We synthesize the scores in the Bach10 dataset with two
methods:
a) Sibelius: We use the library provided by software
Sibelius 1 , which uses sample-based synthesis. In this case
we have C = 1 timbre and D = 1 for dynamics. More-
over, we use three levels of tempo a = {80, 100, 120}
BPM, and three of circular shift e = {0, 0.1, 0.2} seconds.
The dataset is made available through Zenodo 2 .
b) RWC: In this experiments we query the RWC database
[20] for samples corresponding to the notes played by the
instruments in Bach10 for the original score a = {100}
BPM. The samples are played by three different musicians
c = {1, 2, 3}, at three levels of dynamics d = {forte,
mezzo, piano}, and various styles. For this experiment we
picked the normal style of playing. The circular shifting
considered for this method is e = {0, 0.1, 0.2} seconds.

Because we want to isolate the influence of timbre and
dynamics from the influence of tempo, we also synthesize
the ten pieces using the score perfectly aligned with the
audio using the synthesis methods a and b,

4.2 Evaluation setup

a) Evaluation metrics: We used the evaluation framework
and the metrics are described in [21] and [22] : Source
to Distortion Ratio (SDR), Source to Interference Ratio
(SIR), and Source to Artifacts Ratio (SAR).
b) Parameter tuning: For the STFT we used a Blackman-
Harris window. We experimentally set the length of the
window to 4096 samples, which, at a sampling rate of 44.1
KHz corresponds to 96 milliseconds (ms), and a hop size
of 512 samples (11ms). We observed that, for the Bach10
dataset, the higher the STFT resolution the better the re-
sults in separation, especially for the instruments which
have a lower range, such as bassoon.

We kept the time context modeled by the CNN to T = 30
frames, which showed best performance in [11] with the
step size O = 25. The number epochs, which represents
the number of times all the examples of the dataset are
seen by the network, is experimentally determined for each
training experiment. As a general rule, we stop training if
the cost between two epochs drops below 0.05. The size of
a mini-batch is set to 32.

Additionally, various hypotheses were tested and were
not proven to improve the separation: CNN architectures
having separate filters for each instrument, l2 regulariza-
tion and dropout for the dense layers, and Kullback-Leibler

1 http://www.avid.es/sibelius
2 https://zenodo.org/record/321361#.WKxZKd-i7J8
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and Itakura Saito distances instead of Euclidean distance in
the cost function.
c) Hardware and software tools: Our work follows the
principle of research reproducibility, so that the code used
in this paper is made available 3 . It is built on top of Lasagne,
a framework for neural networks using Theano 4 . We ran
the experiments on a computer with GeForce GTX TITAN
X GPU, Intel Core i7-5820K 3.3GHz 6-Core Processor,
X99 gaming 5 x99 ATX DDR44 motherboard.

4.3 Experiments

4.3.1 Convolutional Neural Networks

In order to test various data generation approaches, we
train the CNN system in Section 3.1 with different data:
a) CNN Bach10: We train with all the 10 pieces in the
Bach10 dataset.
b) CNN leave one out (LOOCV) on Bach10: We train
with nine pieces of Bach10 and test on the remaining piece,
repeating this for all the 10 pieces of the dataset.
c) CNN Sibelius: We train with all the synthetic pieces in
the generated dataset described in Section 4.1a.
d) CNN Sibelius GT: We train with all the synthetic pieces
in generated dataset described in Section 4.1a, synthesized
with the score perfectly aligned with the rendition.
e) CNN RWC: We train with all the synthetic pieces in
the generated dataset described in Section 4.1b. Since the
number of the possible combinations between the factors
a, c, d, e is too large, we randomly sample 400 points.
f) CNN RWC GT: We train with all the synthetic pieces
in the generated dataset described in Section 4.1b, synthe-
sized with the score perfectly aligned with the rendition.
In this case, because there are less factors to vary, we ran-
domly sample 50 points.

4.3.2 Score-constrained NMF

We compare the proposed approaches with an NMF timbre-
informed system based on the multi-source filter model
[4, 6] which includes timbre models trained on the RWC
dataset. Because we deal with a score-constrained sce-
nario and for a fair comparison, the gains of the NMF are
restricted to the notes in the score, without taking into ac-
count the time when the notes are played. Thus, each row
of the gains matrix corresponding to a note is set to 1 if
a given instrument plays a note from the score. The other
values in the gains matrix are set to 0 and do not change
during computation, while the values set to 1 evolve ac-
cording to the energy distributed between the instruments.
The NMF parameters are kept fixed as in [4]: 50 iterations
for the NMF, beta-divergence distortion β = 1.3, STFT
length of window of 96ms, and a hop size of 11ms.

4.4 Results and discussion

We present the results of the evaluated approaches in Sec-
tion 4.3.1 and Section 4.3.2 on the Bach10 and Sibelius

3 https://github.com/MTG/DeepConvSep
4 http://lasagne.readthedocs.io/en/latest/Lasagne

and http://deeplearning.net/software/theano/Theano

datasets. The separated audio files and the computed mea-
sures for each file and instrument are made available through
Zenodo 5 .

We verify that when the training and test datasets coin-
cide, the CNN approach achieves the best performance.
We denote this case as ”Oracle”.

4.4.1 Separation results with real recordings: Bach10

We evaluate the considered approaches on the Bach10 dataset.
Overall results are presented in Figure 2, while instrument
specific ones are provided in Figure 3.
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Figure 2. Results in terms of SDR, SIR, SAR for Bach10
dataset and the considered approaches: CNN and NMF [6]

The LOOCV approach is trained with examples from
the same dataset, having the same timbre and style, thus
achieves≈ 4dB in SDR. This illustrates the fact that train-
ing the neural network on similar pieces, played by the
same musicians in the same recording conditions is ben-
eficial for the system.

The approach CNN RWC, which involves synthesizing
the original score with samples comprising a variety of in-
strument timbres and dynamics, yields as good results as
the LOOCV approach ≈ 4dB SDR. On the other hand,
if the training set comprises less samples and less varia-
tions in timbre and dynamics, the we have considerable
lower results, as in the CNN Sibelius approach which has
≈ 1dB SDR. In fact, the CNN RWC approach has higher
SIR than CNN Sibelius (9dB compared with 4dB). Thus,
learning to separate more diverse examples reduces the in-
terference.

Synthesizing the score perfectly aligned with the rendi-
tion does not improve the results for the considered ap-
proaches: CNN RWC GT and CNN Sibelius GT. For this
particular CNN architecture and the modeled time con-
text (300ms), synthesizing the original score with circular
shifting to compensate for local timing variation achieves
results as good as the ideal case when synthesized a per-
fectly aligned score. This is encouraging considering that
a perfectly aligned score is difficult to obtain. Furthermore,
a score-following system introduces additional latency.

5 http://zenodo.org/record/344499#.WLbagSMrIy4
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Figure 3. Results for each instrument in terms of SDR for
Bach10 dataset and the considered approaches: CNN and
NMF [6]

The score-constrained NMF separation which uses tim-
bre models trained on the RWC dataset, has lower SDR
than proposed approach CNN RWC. The NMF system has
higher SAR, less artifacts, at the expense of having lower
SIR, hence more interference between the instruments.

As seen in Figure 3, the separation for all instruments
benefits from having examples with more diverse timbre
or dynamics in the dataset, as CNN RWC has higher SDR
than the CNN Sibelius across all instruments. The results
for bassoon are lower across all approaches. This is in line
with the results yielded by other state of the art approaches
evaluated on this dataset [6,12] and can be due to the lower
register of this instrument and the poor resolution of STFT
for lower frequencies.

4.4.2 Separation results with synthesized recordings:
Sibelius

We now evaluate the considered approaches on the synthe-
sized Sibelius dataset. Because ”GT” approaches do not
differ from their baselines, we decide not to include them
here. The overall results are presented in Figure 4.

When tested on Sibelius dataset which has different tem-
pos, timbres, dynamics than the training Bach10 dataset,
the approach CNN Bach10 decreases in SDR with≈ 4dB.
In fact, all data driven approaches have lower performance
on unseen data. This raises questions on the validity of
cross-fold evaluation methodology of source separation us-
ing small datasets.

As seen in Figure 4, the CNN RWC and NMF yield lower
results on Sibelius synthetic dataset than on the real-life
renditions of Bach10. In this case, the CNN RWC is 2.5dB
higher in SDR than the score-constrained NMF. This is in
line with the results obtained in Section 4.4.1. Thus, train-
ing this CNN with synthetic data of different timbre, dy-
namics and circular shifting, has better performance than
NMF method, being less computationally intensive.

The results for the Oracle in Section 4.4.2 (Figure 2) are
higher than Section 4.4.1 (Figure 4), because the synthe-
sized dataset Sibelius lacks the diversity of dynamics and
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Figure 4. Results in terms of SDR, SIR, SAR for Sibelius
dataset and the considered approaches: CNN and NMF [6]

local tempo variations present in real-life performances of
Bach10, which are more difficult to model.

We assess the computation time of the proposed frame-
work, implemented in Python, in comparison with the NMF
framework [4, 6], implemented in Matlab, on a 2013 Mac-
Book Pro with 2.5Gz Intel Core I5 and 16Gb RAM. Sepa-
rating with CNN took on average 0.76 of the length of the
audio, while the NMF framework took 4.6 of the length of
the audio.

5. OUTLOOK

We proposed a method to generate training data for timbre-
informed source separation methods using neural networks,
in the context of classical music. We departed from a set
of scores and we synthesized new renditions by varying
tempo, timbre, dynamics and local time variations.

We tested two synthesis approaches on real-life perfor-
mances and on synthesized pieces of Bach chorales. We
showed that evaluating in a cross-validation manner on a
small dataset yields results that can not be generalized on
different renditions which depart from the same score.

We underline the importance of timbre and dynamics in
generating training data. Correspondingly, the approach
having more varied timbre and dynamics achieved higher
performance, surpassing a score-constrained NMF method
[4, 6]. The proposed approach is similar to data augmenta-
tion and makes the model more robust to variations which
one can expect in real cases. Thus, having a more diverse
training set avoids overfitting.

As future work, we have to determine the optimum num-
ber of random samples to be used for training, as a trade-off
between performance and training time. Then, we plan on
testing the current framework on more complex mixtures,
as orchestral music. Furthermore, the current method can
be extended to a score-informed scenario by having the
score as input to the network.
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J. Janer, “Score-informed source separation for mul-
tichannel orchestral recordings,” Journal of Electrical
and Computer Engineering, vol. 2016, 2016.

[5] T. Virtanen, “Monaural sound source separation by
nonnegative matrix factorization with temporal conti-
nuity and sparseness criteria,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 15,
no. 3, pp. 1066–1074, 2007.

[6] J. J. Carabias-Orti, T. Virtanen, P. Vera-Candeas,
N. Ruiz-Reyes, and F. J. Canadas-Quesada, “Musi-
cal Instrument Sound Multi-Excitation Model for Non-
Negative Spectrogram Factorization,” IEEE Journal of
Selected Topics in Signal Processing, vol. 5, no. 6, pp.
1144–1158, Oct. 2011.

[7] P.-S. Huang, S. D. Chen, P. Smaragdis, and
M. Hasegawa-Johnson, “Singing-voice separation
from monaural recordings using robust principal com-
ponent analysis,” in ICASSP. IEEE, mar 2012, pp.
57–60.

[8] E. Grais, M. Sen, and H. Erdogan, “Deep neural
networks for single channel source separation,” in
ICASSP. IEEE, may 2014, pp. 3734–3738.

[9] A. Simpson, G. Roma, and M. Plumbley, “Deep
karaoke: Extracting vocals from musical mixtures us-
ing a convolutional deep neural network,” in Interna-
tional Conference on Latent Variable Analysis and Sig-
nal Separation. Springer, 2015, pp. 429–436.

[10] S. Uhlich, F. Giron, and Y. Mitsufuji, “Deep neural
network based instrument extraction from music,” in
ICASSP. IEEE, 2015, pp. 2135–2139.

[11] P. Chandna, M. Miron, J. Janer, and E. Gómez,
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