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ABSTRACT

We present the evaluation of a sonification approach for
the acoustic analysis of tremor diseases. The previously
developed interactive tool offers two methods for sonifi-
cation of measured 3-axes acceleration data of patients’
hands. Both sonifications involve a bank of oscillators
whose amplitudes and frequencies are controlled by ei-
ther frequency analysis similar to a vocoder or Empirical
Mode Decomposition (EMD) analysis. In order to enhance
the distinct rhythmic qualities of tremor signals, additional
amplitude modulation based on measures of instantaneous
energy is applied. The sonifications were evaluated in two
experiments based on pre-recorded data of patients suffer-
ing from different tremor diseases. In Experiment 1, we
tested the ability to identify a patient’s disease by using
the interactive sonification tool. In Experiment 2, we ex-
amined the perceptual difference between acoustic repre-
sentations of different tremor diseases. Results indicate
that both sonifications provide relevant information on tre-
mor data and may complement already available diagnos-
tic tools.

1. INTRODUCTION

Tremor is a movement disorder which produces involun-
tary rthythmic oscillation movements of a body part [1]. As
it can be caused by various neurological diseases [2], a cor-
rect diagnosis is quickly needed to choose the right ther-
apy. Each of these diseases evokes a specific movement
pattern which can be recognized visually by specialized
neurologists. This visual diagnosis, however, is unreliable
and common approaches for additional ex-post analysis of
videos or measured sensor data are time-consuming and
can not be easily integrated into daily clinical practice. A
sonification has the advantage that it provides an auditory
representation which is continuously following the spec-
tral characteristics of the tremor and thus allows to keep
track of the time-dependent spectral structures. Real-time
sonification of tremor movement data could therefore be-
come a promising extension to already available diagnostic
tools. Sonification has recently been successfully used for
for therapy of Parkinsonian tremor [3,4].

In a follow-up to our previous research [5], we developed
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two sonification methods for tremor analysis which are de-
scribed in detail in [6]. These are intended to be used in-
terchangeably dependent on tremor characteristics and per-
sonal preference. Both sonifications and the corresponding
graphical user interface are implemented in Pure Data ! .
The interface is targeted towards real-time use as a supple-
mentary medical tool in order to improve diagnostic qual-
ity. It is employed to extract relevant features of the tremor
signal, which are exposed aurally by the developed sonifi-
cation algorithms. The resulting feature space is high di-
mensional and therefore predestined for aural rendering in
preference to visual representations. This tool, however,
aims not at providing definite answers nor a final diagnosis
of the disease.

In a previous pilot study (see [6]), test participants were
asked to identify the tremor diseases of patients by us-
ing the interactive sonification interface on pre-recorded
movement data of 30 patients who divided equally into
three different groups of diseases (Parkinsonian, Essential,
and Psychogenic tremor). Participants used headphones
and obtained prior training with the same set of patients.
On average, participants reached 61 % correct diagnoses,
which is far above chance (1/3). According to partici-
pating neurologists, the proposed interface facilitates an
insight in the movement pattern of an examined tremor
without visual tools. An interactive switch between so-
nifications did not improve overall sensitivity. However,
test participants positively welcomed the possibility to pa-
rametrize the sonifications to personal preference.

In retrospective, this pilot study suffered from unclear
data and immature experimental design: It was based on
a small sample size, clinical reference diagnoses were not
perfectly reliable, and test participants were trained with
the same set of patients’ tremor data as used in the experi-
ment. The results are therefore of limited significance. As
a consequence, we carried out an extended study which
is presented here. It includes more test participants and a
larger dataset of patients with confirmed diagnosis.

This article is structured as follows. After this introduc-
tion, Sec. 2 gives an overview of the technical setup for
data acquisition and the two different sonification meth-
ods. One used frequency analysis (Vocoder sonification,
Sec. 2.1), while the other is based on Empirical Mode De-
composition analysis (EMD sonification, Sec. 2.2). These
sonifications were evaluated with real patients’ data in an
identification test with the interactive audiovisual user in-
terface as well as in a triangle discrimination test (Sec. 3).

! Pure Data (Pd): http://puredata.info/
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Finally, in Sec. 4, we summarize our findings and give an
outlook on future work.

Accompanying sound examples can be found on the pro-
ject web page [7]. These include stereo recordings of both
sonifications with two patients of each tremor type.

2. SONIFICATION APPROACH

Both sonification methods share the basic technical setup
as well as some fundamental data conditioning steps.

Movement data is recorded by 3-axis accelerometers > at-
tached to the patient’s hands and sampled at 1 kHz. Sig-
nals are recorded with CED Spike2? and pre-processed in
Matlab. A DC removal and 70 Hz low pass filter is ap-
plied on the acceleration signal in order to cover the typi-
cal frequency range of pathological tremor (predominantly
3—15Hz). Both left and right arm sensors are individually
sonified.

As strong amplitude variations can occur between differ-
ent measurements, Automatic Gain Control (AGC) is ap-
plied to the input signal at different stages in both sonifi-
cations. The measurement data is further conditioned by a
Principal Component Analysis (PCA) [8]. In the context
of the presented sonifications, the first principal compo-
nent is projected on the multichannel data to retrieve the
monophonic input signal z[t] (see [5] for a more detailed
description).

We will briefly describe the basic sonification algorithms.
For further information, please consult [6].

2.1 Vocoder Sonification

The first sonification method is similar to a vocoder.

By using a sliding window FFT, the input signal is di-
vided into 5 frequency bands (2—4 Hz, 4—6 Hz, 6—9 Hz,
9—13Hz, and 13—20 Hz). Center frequencies and band-
widths have been selected based on experience with the
spectra of different tremor types.

Then, the normalized energies in the individual bands are
used to control the amplitudes of 5 sinusoidal oscillators
which are tuned harmonically to each other, i.e., follow-
ing the harmonic series (fy , 2 - fo , etc.). A Frequency
Modulation (FM) with the smoothed half-wave rectified
input signal x[t] can be applied optionally. This results
in a time-varying fundamental frequency of f;(¢) instead
of a constant fj.

The sum of the five oscillator signals is finally amplitude
modulated by the variably smoothed half-wave rectified in-
put signal x[t].

The Vocoder sonification produces a harmonic complex,
evoking a clear, optionally time-varying pitch percept (com-
pare sound examples [7]). The time-varying timbral char-
acter resembles vocal formants whereas the overall ampli-
tude modulation adds a rhythmic dimension.

2 Biometrics ACL300 (mass: 10 g, accuracy: +2 % FS):
http://www.biometricsltd.com/accelerometer.htm
connected to CED 1401 interface.

3 CED Spike2: http://ced.co.uk/products/spkovin

2.2 EMD Sonification

The second sonification is based on Empirical Mode De-
composition analysis.

EMD was originally developed by [9] to analyze non-sta-
tionary and non-linear signals. The idea of EMD is that
complex data sets can be decomposed into a finite (and of-
ten small) number of so-called Intrinsic Mode Functions
(IMFs). Each IMF represents one mode of the signal. The
higher the index of an IMF, the lower its frequency com-
ponents.

In contrast to Fourier analysis where a signal is decom-
posed into a set of pre-defined base functions, the EMD
obtains the base functions adaptively from the signal. A
perfect reconstruction of the original signal is possible via
summation of the contained IMFs and the resulting resid-
ual signal. The basic EMD algorithm is explained in [9—
12].

For each individual IMF, the instantaneous phase, fre-
quency, and amplitude can be obtained from the Hilbert
transform. In conjunction with the EMD, this is called
the Hilbert-Huang Transform (HHT) [9, 13]. The HHT
has been proposed for tremor analysis in recent studies,
e.g., [14-16].

For the sonification, only the first five IMFs of the in-
put signal z[t] are determined via EMD. Eventually, these
IMFs are individually leveled by AGC.

Each IMF then controls the frequency and amplitude of
an individual sinusoidal oscillator. Although both the in-
stantaneous amplitude and the frequency can be computed
at any time by using the Hilbert transform, we used the
generalized zero-crossing method [17] for the frequency,
as it was found to provide more stable results. The deter-
mined frequencies are then multiplied by a user-controlled
constant factor to map the low tremor frequencies to the au-
dible range. Each oscillator is then individually amplitude
modulated by the smoothed half-wave rectified IMF sig-
nal itself, in order to display the original tremor frequency
range as a superposition of rhythmic structures.

Finally, the output signal of the sonification is formed by
the sum of these four signals.

Due to the specific time-varying characteristics of the tre-
mor signals, the sonic result of the EMD-based sonification
resembles the sound of singing birds (compare sound ex-
amples [7]). The register of each “bird” is dependent on
the frequency and amplitude of the corresponding IMF.

3. EVALUATION STUDY

The presented sonification methods as well as the inter-
active interface were evaluated on the basis of pre-recor-
ded movement data of 97 patients with confirmed diagno-
sis. The clinical tremor data were collected by the Medical
University of Graz and UCL Institute of Neurology Lon-
don between 2012 and 2013. Hand acceleration data were
recorded for both hands simultaneously in rest (arms hang-
ing) and posture (arms outstretched) condition. The pa-
tients divide unevenly into four tremor types: 24 x Parkin-
sonian, 19x Essential, 36 x Psychogenic, and 18x Dysto-
nic tremor. To force an even distribution, we randomly se-
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Figure 1. Graphical user interface (here in training mode). Annotations in red letters. Visual feedback: a) waveform, b)
oscilloscope, c¢) FFT spectrum, each for left and right channel, d) ratio between rotational and translational movement.
Global parameters: e) smoothing of the AM modulator, f) mono/stereo and left/right channel switch, g) sonification switch.
Vocoder sonification: h) FM modulation, i) fundamental frequency. EMD sonification: j) frequency factor.

lected 18 patients of each type to form the reduced dataset
of 18 x4 = 72 patients.

Test participants for the extended study were recruited
from an expert listening panel [18, 19], a group of mu-
sicians and sound engineers with experience in listening
tests. Despite the target audience being neurologists, tra-
ined listeners have been chosen to ensure a best-case sce-
nario and hence a more fair comparison of the results with
the currently achieved diagnostic accuracy through visual
and computer-aided ex-post analysis methods. Neurolo-
gists can acquire these abilities provided that they obtain
appropriate ear training. The sonification was presented
with closed headphones. Test participants were allowed to
take handwritten notes throughout the experiments.

We carried out two experiments which are discussed be-
low: a 4AFC identification task (Sec. 3.1) similar to the
pilot study (cf., [6]) and a triangle test (also called 3AFC
oddity task) which is described in Sec. 3.2.

3.1 Experiment 1: training and identification task

The basic design of Experiment 1 was similar to the pilot
study [6]. It further addresses learning effects over several
training sessions. An additional focus of this experiment
was the interactive use of sonification parameters. The goal
was to verify the results of the pilot study with a larger
number of patients and tremor types.

3.1.1 User Interface

Apart from the sonic representation of the tremor data, a
simple visualization is provided (see Fig. 1). It shows var-
ious visual information, such as waveform view, oscillo-
gram, level meter, FFT spectrum, ratio between rotational
and translational movement strength as well as band inten-
sities and IMF frequencies for the individual sonifications.

Further, apart from standard controls such as volume, the
interface features interactive access to a selection of so-
nification parameters. Globally for both sonifications, the
smoothing of the AM modulator signal as well as stereo/
mono playback can be controlled. In addition, each so-
nification allows individual access to oscillator frequency
(base frequency for Vocoder sonification, multiplicative fac-
tor for EMD sonification) and dedicated gains for left and
right arm sensors. Another slider provides control of the
FM index for the Vocoder sonification.

3.1.2 Procedure

In Experiment 1, participants had to accomplish three ses-
sions (S1-S3) of one hour on different days with approxi-
mately one week of pause in between. Each session started
with approx. 30 minutes of free training where participants
could freely listen to the sonifications of 8 patients per tre-
mor type (24 patients in total) with disclosed diagnosis.
Participants were able to decide by themselves when they
felt to be ready for the next part of the session, in which
they had to identify the disease of 24 patients (6 per tre-
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Session 1 Session 2 Session 3 Overall (S1 and S3)
Percent correct answers 31.5(10.2)  39.1(7.3) 31.5(10.0) 31.5(9.9)
Confidence Interval CI95 269 —-364 342-—-441 26.9—-36.4 28.2 —34.9
Confidence (from 1 to 100) 38.8 (24.2) 43.3(23.5) 39.9 (26.9) 39.4 (25.6)
Response time (seconds) 34.6 (25.2) 41.9 (27.1) 42.1(33.9) 38.4(30.1)

Table 1. Overview of the results from Experiment 1. Values in parentheses describe one standard deviation.

mor type) by using the interactive sonification interface.
The task followed the same procedure as in the pilot study.
Feedback was given after each trial.

For each participant individually, the dataset was split
randomly into 3 subsets of 24 patients (6 per tremor type).
These 3 subsets were presented in the training and test-
ing parts of the 3 sessions. The presentation order of pa-
tients within each session and within each mode (training/
testing) was randomized across participants. In the first
and in the last session, training was performed with sub-
set A, while a completely new subset (B/C) was introduced
for the testing part. In the second session, both training and
testing were performed with the same subset (B):

S1 S2 S3
Training A B A
Testing B B C

S1 and S3 are seen as a realistic scenario where known
patients’ characteristics were applied to unknown patients.
In S2, the ability of memorizing specific patients’ char-
acteristics was tested, comparable to the procedure in the
pilot study.

During the testing part of each session, participants were
asked to submit a diagnosis (4AFC) and judge their con-
fidence (values from 1 to 100) for each of the 24 patients.
Feedback (reference diagnosis) was given after each trial.
Sonification-specific parameters as well as the condition
(rest/posture) could be additionally controlled by a motor-
ized MIDI controller (Behringer BCF-2000).

3.1.3 Results

Overall results of the identification task are shown in Tab. 1.
On average, the test participants achieved 31.5% correct
answers for S1 and S3, while S2 led to 39.1 % correct an-
swers. Confidence intervals in Tab. 1 are based on the in-
verse Beta CDF. The total percent correct answers lead to
a discrimination index d’ of 0.26 for S1/S3 and 0.49 for
S2 [20].

The primary test results (percent correct answers) were
analyzed by using a binomial test with one variable “dis-
ease” (4 levels), assuming a constant hit rate of 1/4, sample
size of 384 (24 patients x 16 participants), and significance
level of p=0.05. For all three sessions, the achieved per-
cent correct answers are significantly higher than chance
(p=0.002 for S1/S3, p<0.001 for S2). The overall results
of the first and third session are identical and therefore con-
sidered equivalent.

For further analysis of the results, contingency tables were
created for the individual sessions (Tab. 2a—2c¢) as well as
for the pooled results of S1 and S3 (Tab. 2d). The tremor

types Parkinsonian, Essential, Psychogenic, and Dystonic,
are referred to as Par, Ess, Psy, and Dys.

The higher percent correct responses in S2 compared to
S1 and S3 is further supported by the higher contingency
coefficient* (0.32 vs. 0.22 and 0.25), which means that
there is a stronger relation between reference diagnosis and
submitted diagnosis for S2 compared to both other ses-
sions.

The pooled results of S1 and S3 (Tab. 2d) reveal a high
confusion between Parkisonian and Psychogenic tremor
(31.8 % Par falsely assigned to Psy, 28.1 % Psy falsely as-
signed to Par). The lowest false positive rate appeared be-
tween Parkinsonian and Dystonic tremor (16.1 % Par false-
ly assigned to Dys, 18.8 % Dys falsely assigned to Par).

A binomial test as above was performed on the results
per tremor type. When looking at the pooled results of
S1 and S3, only the percent correct identifications of Par-
kinsonian, Psychogenic, and Dystonic tremor were signif-
icantly higher than chance (Par: p=0.014, Psy: p=0.042,
Dys: p=0.004), while Essential tremor could not be iden-
tified (p=0.107). However, the differences in sensitivity
(Par: 0.32, Ess: 0.29, Psy: 0.31, Dys: 0.34) and F-mea-
sure (Par: 0.38, Ess: 0.36, Psy: 0.33, Dys: 0.42) are only
small. The difference in percent correct responses between
the individual tremor types therefore seems marginal.

We did not find any significant clusterization of test par-
ticipants based on their individual contingency tables. Also,
the results of those participants who primarily used the
vocoder-based sonification did not significantly differ from
the results of those wo preferred the EMD-based sonifica-
tion (9 participants vs. 7 participants, 32.3 % vs. 30.4 % cor-
rect answers as average of S1 and S3). However, there
were five top performers who achieved at least 33.3 % cor-
rect answers in every session (Average of S1 and S3: 36.6 %
correct answers, ranging from 33.3 % to 47.7 %).

On average (pooled over S1 and S3), participants took
38.4s (§D=30.1s) to complete one trial and reported a
confidence of 39.4 (SD=25.6).

3.1.4 Interactive use of sonification parameters

For the slider- or rotary-based controls (AM smoothing,
Vocoder sonification base frequency and FM index, EMD
sonification frequency factor), we observed that partici-
pants found their preferred values already within the first
training session. These parameters were rarely changed
during diagnosis.

The sonification switch also exhibited convergent behav-
ior for all but one participant who was continuously switch-

. . 2 .
4 Pearsons’s contingency coefficient: K = / Ni,ghiz’ where NN is
the sample size.
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D
R
Par 32.3 | 20.8 | 31.3 | 15.6
Ess 28.1 | 229 | 25.0 | 24.0
Psy 28.1 | 20.8 | 344 | 16.7
Dys 24.0 | 229 | 16.7 | 36.5
Sum | 112.5 | 87.5 | 107.3 | 92.7

(a) Session 1. K = 0.22.
Par Ess Psy Dys

Par 36.6 | 16.7 | 21.9 21.9
Ess 219 | 385 | 19.8 19.8
Psy 18.8 | 18.8 | 40.6 | 21.9
Dys 135 | 21.9 | 271 | 37.5
Sum 93.8 | 95.8 | 109.4 | 101.0

(b) Session 2. K = 0.32.

Par Ess Psy Dys

R D Par Ess Psy Dys
Par 32.3 | 188 | 32.3 | 16.7
Ess 146 | 354 | 30.2 | 19.8
Psy 28.1 | 188 | 27.1 | 26.0
Dys 13.5 | 21.9 | 33.3 | 31.3

Sum 88.5 | 94.8 | 122.9 | 93.8
(c) Session 3. K = 0.25.
D

R Par Ess Psy Dys

Par 323 | 19.8 | 31.8 | 16.1
Ess 214 1 29.2 | 276 | 219
Psy 28.1 | 19.8 | 30.7 | 214
Dys 18.8 | 224 | 25.0 | 33.9
Sum | 100.5 | 91.1 | 115.1 | 93.2

(d) Sessions 1 & 3. K = 0.19.

Table 2. Contingency tables for the three sessions and the
pooled results of S1 and S3. Values describe % of sub-
mitted diagnoses D. R is the reference diagnosis. Correct
answers (main diagonal) are highlighted. K is Pearson’s
contingency coefficient.

ing between sonifications throughout the whole experiment.

The average amount of sonification switches per trial de-
creased from 0.57 switches in S1 to 0.27 in S2 and 0.08
in S3. Both other toggles (mono/stereo and rest/posture)
never converged during the experiment (1.22 and 1.46 swit-
ches per trial in S1 vs. 1.42 and 2.21 in S3, respectively).
Even in S3, 7 participants regularly switched to mono, and
14 participants regularly switched between rest and posture
position.

3.1.5 Discussion

The quick convergence of the slider- and rotary-based pa-
rameters (already during the first training session) indi-
cates that they did not contribute to the test participants’
judgments of tremor diseases. During informal interviews,
test participants mentioned that the base frequency for the
Vocoder sonification and the frequency factor for the EMD
sonification had only minor effect on the information con-

veyance and were only changed in respect to personal pref-
erence. Also frequency modulation for the Vocoder so-
nification did not add additional information but was of-
ten applied for diversification of the otherwise relatively
monotonic sounds. For the smoothing factor of the ampli-
tude modulation, however, participants had to find a com-
promise: while less smoothing leads to higher rhythmic
resolution, the stronger transients implicate bandwidth ex-
pansion and therefore deteriorated perception of frequency
changes. While fixed default values for the mentioned pa-
rameters might work for most users, an optional parame-
trization for expert users is assumed to be advantageous.
The interactive switch between sonifications has been used
regularly by at least one test participant, which further em-
phasizes its necessity.

The stereo/mono (connected with left/right switch) and
rest/posture switch were used excessively by most test par-
ticipants. During informal interviews, many test partici-
pants mentioned that a comparison between left and right
arm sensor as well as between rest and posture condition
revealed critical information for tremor type identification.
These parameters are therefore regarded as essential for
acoustic tremor analysis.

The discrimination between 4 tremor types by using the
interactive sonification interface seems to be excessively
demanding (31.5 % correct diagnoses). According to their
hand-written notes as well as informal interviews, most of
the test participants were focused on finding specific sound
characteristics that are unique to a specific tremor disease.
However, there were outlying patients in all tremor cat-
egories which led to confusion. This observation is also
reflected in the submitted confidence values which did not
correlate with the correctness of the submitted diagnoses.

The better performance in the second session shows that
the test participants were able to remember specific pa-
tients’ sound characteristics and corresponding reference
diagnosis (39.1 % correct responses in S2 vs. 31.5% in
S1/S3). This also explains the promising results of the pi-
lot study: in both pilot study and S2 of Experiment 1, the
training was performed with the same set of patients. In
real life, however, a diagnosis is only needed for unknown
patients. In the more realistic conditions of S1 and S3, the
test participants could not rely on patient-specific sound
characteristics, but only on more general tremor-specific
structures.

There was no improvement after training (S1 vs. S3).
We assume that the training parts of the second and third
sessions were needed to recapitulate the individual tremor
types’ sound characteristics. Further, we noticed that the
new set of patients in S2 did not always match the partici-
pants’ notes, which forced them to start again from scratch.
We suppose that training time was not sufficient for find-
ing the possibly very subtle differences between different
tremori.

Both sonifications were used equally often and provided
similar results. This finding is consistent with the pilot
study and shows once more that an optional choice could
be important in order to adapt to the users’ individual pref-
erences.
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Von den 3 Fatienten haben zwei die gleiche Tremor-Erkrankung.
Welcher Patient passt nicht dazu?

Patient 1 Patient 2 Patlent 3

e
Antwort .

Figure 2. Graphical user interface for Experiment 2. Col-
ors are inverted and converted to grayscale for this article.

A further interpretation of participants’ confidence and
response time is not possible due to the high spread.

The results of Experiment 1 suggest that an absolute iden-
tification of tremor diseases with the proposed interface
might be too difficult. However, the contingency table in
Tab. 2d shows that some pairs of tremori were less often
confused with each other than other pairs. In order to ver-
ify these pairings, we performed a second experiment.

3.2 Experiment 2: triangle test

After having accomplished the training and absolute diag-
nosis task of Experiment 1, the same 16 participants per-
formed a discrimination task comprising of 72 trials which
were equally split in two sessions of approx. one hour each,
performed on different days.

3.2.1 Procedure

Before the actual test, all participants performed a manda-
tory training with the interactive sonification interface in
order to recapitulate the different tremor characteristics.

In a triangle test setup (3AFC oddity task), only a sim-
ple graphical user interface without visual tools was shown
(see Fig. 2). Sonifications of three different patients were
presented: two of the same tremor type and one of a dif-
ferent type. For each triple of patients, participants had to
indicate the odd, i.e., the patient whose tremor type dif-
fered from the others’. After each trial, participants ob-
tained feedback consisting of the reference diagnosis for
all three patients, with the correct answer highlighted.

For each participant and session individually, the patients
of the trials were chosen randomly so that every patient
appeared once as the odd stimulus and twice inside the pair
of similar stimuli. The three patients per trial as well as the
36 trials per session were presented in random order.

Participants could freely listen to the sonifications of all
three patients in rest as well as in posture condition. There
was no restriction in time. Switching between Vocoder and
EMD sonification was still possible. Sound was always
presented in stereo in order to limit the possibilities for in-
teraction to a minimum.

3.2.2 Results

The overall results of Experiment 2 are shown in Tab. 3 for
the 6 different pairs of tremor types individually. On av-

Type pair % correct  d’ response time
Par vs. Ess 39.6 0.88 59.7
Par vs. Psy 38.5 0.81 51.5
Par vs. Dys 45.8 1.25 58.4
Ess vs. Psy 38.0 0.73 50.3
Ess vs. Dys 35.9 0.55 54.5
Psy vs. Dys 49.5 1.41 52.7
Overall 41.2 0.95 54.5

Table 3. Overview of the results per pair of tremor types in
Experiment 2: average percent correct responses, sensitiv-
ity index d’ [21], and response time in seconds.

erage, test participants achieved 41.2 % correct judgments,
yielding a sensitivity index d’ of 0.95 (based on [21]). Test
participants achieved above-average results only when dis-
criminating Dystonic tremor from Parkinsonian or Psycho-
genic tremor (45.8 and 49.5 % correct, respectively).

For statistical analysis of the results, a one-tailed bino-
mial test was performed for each pair of tremor types (sam-
ple size n=192 (pooled over all subjects), chance level
p=1/3, significance level: p=0.05). According to the bi-
nomial test there was a highly significant perceptual dif-
ference between Parkinsonian and Dystonic as well as be-
tween Psychogenic and Dystonic tremor (p<0.001 for both
pairs). A marginally significant difference between Par-
kinsonian and Essential tremor was found (p=0.040). Be-
tween the other three pairs of tremor types no significant
perceptual difference could be found (p=0.074 for Par/Psy,
p=0.097 for Ess/Psy, and p=0.244 for Ess/Dys).

We observed that participants usually chose their prefer-
red sonification at the beginning and did not change it any-
more. User interaction is therefore not further investigated.

The average response time (time to accomplish one trial)
was 54.5 seconds (SD=35.0).

In order to examine similarities between individual test
participants, we performed a hierarchical cluster analysis.
Individually for each participant, the total percent correct
responses for the pairs of tremor types form a 6-dimen-
sional vector. Based on these vectors and Ward’s method
of minimum inner squared euclidean distance within clus-
ters [22], test participants divide equally into two groups
of 8. Results are shown in Tab. 4. While Cluster 1 in-
hibits only small differences in percent correct responses
between tremor pairs, the participants of Cluster 2 were
exceptionally good at discriminating Dystonic tremor from
Parkinsonian and Psychogenic tremor (62.5 % and 54.2 %,
respectively). Interestingly, in Cluster 1, all participants
except two preferred the EMD sonification, while in Clus-
ter 2 all participants except one preferred the Vocoder so-
nification.

Differences in overall percent correct responses between
participants grouped by cluster or sonification preference,
however, were not significant.

Five of the 16 participants (see “Top 5” in Tab. 4) reached
alevel of above 45 % correct responses (on average: 47.8 %,
ranging from 45.8 % to 50.0 %). Three of those used the
Vocoder Sonification while two worked with the EMD So-
nification.
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Type pair Cluster I  Cluster2 Top 5
Par vs. Ess 44.8 34.4 35.0
Par vs. Psy 38.5 38.5 50.0
Par vs. Dys 29.2 62.5 50.0
Ess vs. Psy 39.6 36.5 48.3
Ess vs. Dys 42.7 29.2 43.3
Psy vs. Dys 44.8 54.2 60.0
Average 39.9 42.5 47.8

Table 4. Average results per pair of tremor types in Experi-
ment 2 for the two main clusters and the 5 best performing
participants. Values describe % correct answers.

3.2.3 Discussion

The overall discrimination index d’=0.95 in Experiment 2
shows that the oddity task was indeed easier than the iden-
tification task of Experiment 1 (d'=0.26). However, over-
all percent correct responses are still too low for direct ap-
plications in the medical context.

A cluster analysis on the basis of the test participants’ re-
sults leads to an almost perfect division into the users of
the different sonifications. While the Vocoder sonification
seems to provide similar discrimination performance for
all tremor pairs, users of the EMD sonification achieved
extraordinary results for the pairs Par/Dys and Psy/Dys (at
the expense of lower percent correct responses for the other
pairs). Each sonification might emphasize different aspects
of the observed tremori. If those aspects were known, par-
ticipants might be able to combine both sonifications in
order to improve their sensitivity. The interactive change
between both sonifications therefore seems reasonable and
might facilitate the construction of a coherent picture based
on the observed phenomena in order to make informed de-
cisions.

The five top performers of Experiment 2 (Tab. 4) also
achieved high identification rates in Experiment 1 (on av-
erage: 33.8 % correct, ranging from 31.3 % to 37.5 %, two
of them among the Top 5). This leads to the assumption
that at least some test participants have found consistent
tremor-specific sound characteristics and were able to ap-
ply these complex models in an identification task as well
as in a discrimination task.

4. CONCLUSIONS AND OUTLOOK

In the presented study, we evaluated tremor disease identi-
fication and discrimination by means of interactive sonifi-
cation.

In Experiment 1, test participants were asked to indicate
the tremor type of unknown patients by analyzing pre-re-
corded movement data with the interactive sonification in-
terface. Average percent correct diagnoses were signifi-
cantly above chance for patients with Parkinsonian, Psy-
chogenic, and Dystonic tremor, but not for Essential tre-
mor. Overall sensitivity index d’ was 0.26.

In Experiment 2, participants were able to distinguish
Parkinsonian tremor from Essential and Dystonic tremor
with sensitivity significantly above guessing rate. A signif-

icant perceptual difference was also shown between Dys-
tonic and Psychogenic tremor. Overall d’ was 0.95.

During the first experiment, participants were allowed to
manipulate critical sonification parameters. All test partic-
ipants found their preferred sonification and correspond-
ing parameters quickly. Still, the permanent comparison
between left and right arm sensor as well as between rest
and posture condition provided useful information. The
interactive change of these parameters facilitates the con-
struction of a coherent image of the observed tremor and
allows informed decision making.

The proposed sonification interface is not meant to re-
place currently available diagnostic tools, but rather to com-
plement them. The fact that both sonifications led to dif-
ferent results in the triangle test lets us conjecture that they
could supplement each other in a beneficial way, espe-
cially if additional knowledge from other diagnostic tools
is available. A combination and cross-checking of differ-
ent sources of information is essential for an efficient and
correct diagnosis.

It is obvious that both sonifications as well as the cor-
responding user interface need to be substantially revised.
This revision could be based on the test participants’ qual-
itative feedback which we collected. Informal interviews
with test participants revealed that the offered sonification
parameters might not be sufficient. One of the top perform-
ing participants complained that the first IMF can become
obtrusive and often masks the important fine structure of
the higher IMFs; however, at the same time, it also con-
tains critical information and can therefore not be omitted.
Individual volume control for the IMFs may therefore an
option for future improvements.

Further, we observed that some test participants success-
fully used the spatial movement visualization for decision
making: while Parkinsonian and Dystonic tremor showed
almost only rotational movement, Essential and Psychoge-
nic tremor sometimes caused sudden switches towards a
translational movement. At this stage, however, the ratio
between rotational and translational movement is not con-
veyed by the sonification. A prior approach mapping this
movement quality to a chorus effect (see [6]) did not work
due to the parameter’s transient behavior. A promising op-
tion might be a mapping of the translation/rotation-ratio to
relative pitch.

Finally, we think that the collected strategies of the test
participants could be brought in correspondence with Mu-
sic Information Retrieval (MIR) analysis descriptors ap-
plied to sonifications and raw movement data. Thus, the
sonification qualities which have proven to be perceptually
relevant in tremor segregation could be enhanced in the
next development steps. In general, the re-design of the
developed sonifications could be informed by the findings
of this combined qualitative and quantitative analysis.
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