
THE CSOUND PLUGIN OPCODE FRAMEWORK

Victor Lazzarini
Maynooth University,

Ireland
victor.lazzarini@nuim.ie

ABSTRACT

This article introduces the Csound Plugin Opcode Frame-
work (CPOF), which aims to provide a simple lightweight
C++ framework for the development of new unit genera-
tors for Csound. The original interface for this type work
is provided in the C language and it still provides the most
complete set of components to cover all possible require-
ments. CPOF attempts to allow a simpler and more eco-
nomical approach to creating plugin opcodes. The paper
explores the fundamental characteristics of the framework
and how it is used in practice. The helper classes that are
included in CPOF are presented with examples. Finally,
we look at some uses in the Csound source codebase.

1. INTRODUCTION

Plugins in Csound [1] are usually written in C, which pro-
vides a low-level access to the engine, allowing an un-
compromising and complete scope for new opcode (unit
generator) development. For most system developers, this
will continue to be the best working environment. How-
ever, for many of the more common forms of plugins, this
interface can be complex and cumbersome. In particular,
we might like to take advantage of an object-oriented ap-
proach so that we can, for instance, re-use code more ex-
tensively and take advantage of existing algorithms and li-
braries. For this, the ideal language is probably the C++
in its more modern incarnations [2]. In this paper, we de-
scribe a lightweight framework to facilitate programming
in this environment, the Csound Plugin Opcode Frame-
work (CPOF – see-pough or cipó, vine in Portuguese). Wh-
ile there is a pre-existing C++ interface for plugin writing
in the Csound codebase, this framework provides an alter-
native to it, that attempts to be thin, simple, complete, and
handling internal Csound resources in a safe way (using the
same mechanisms provided by the underlying C interface).

1.1 Design Fundamentals

The conditions in which the framework is supposed to work
constrain significantly the scope of what is possible. In
particular,

Copyright: © 2017 Victor Lazzarini . This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

1. Csound is written in C. It instantiates opcodes and
makes calls to opcode processing functions, but it
does not know anything about C++.

2. Virtual functions are a no-go zone (due to 1). Every-
thing needs to be set at compile time.

3. Registering processing functions requires that these
are defined as static.

4. Up to three different functions should be registered
(for different action times).

5. In C, an opcode dataspace “inherits” from a base
structure (OPDS) by adding this as its first member
variable.

One of the possibilities for designing a framework based
on inheritance without virtual functions is to employ a met-
hod called curiously recurring template pattern (CRTP)
[3] . A variation of this is in fact used in the pre-existing
C++ opcode development interface. However, we can do
better with a much simpler approach. There is no need for
a compile-time mimicking of the virtual-function mecha-
nism. This is because it is not our objective to have a gen-
eral purpose framework for C++ programs, where users
would be instantiating their own objects and possibly us-
ing generic pointers and references that need to bind to the
correct override.

Here there is a much narrower scope: Csound does the
instantiation and the calls, so we can make the decision at
compile time just by providing functions that hide rather
than override (in the virtual-function sense) the base class
ones. In this case, hiding plays the same role as overrid-
ing. So we can have a plugin base class from which we
will inherit to create the actual opcodes. This class will in-
herit from OPDS and provide some extra members that are
commonly used by all opcodes. It will also provide stub
methods for the processing functions, which then can be
‘specialised’ in the derived classes.

Given that they will not ever be called, it would seem
that these stubs are surplus to requirements. However, hav-
ing these allows a considerable simplification in the plugin
registration process. We can just register any plugin in the
same way, even if it does only provide one or two of the
required processing functions. The stubs play an impor-
tant role to keep the compiler happy in this scheme, even
if Csound will not take any notice of them.

This mechanism requires that we provide function tem-
plates for registration. These get instantiated with exactly
the derived types and are used to glue the C++ code into

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-267

mailto:victor.lazzarini@nuim.ie
http://creativecommons.org/licenses/by/3.0/


Csound. Each one of them is minimal: consisting just of
a call to the instantiated class processing function. For in-
stance, one of these, used at instrument initialisation time,
is defined simply as

template <typename T>
int init(CSOUND *csound, T *p) {
p->csound = (Csound *)csound;
return p->init();
}

In this case T is derived type passed on registration (which
is defined at compile time). When running, Csound calls
this function, which in its turn delegates directly to the plu-
gin class in question. Note that this is all hidden from the
framework user, who only needs to derive her classes and
register them. As we will see in the following sections, this
scheme enables significant economy, re-use and reduction
in code verbosity (one of the issues with CRTP).

2. THE FRAMEWORK

CPOF is based on two class templates, which plugin classes
derive from and instantiate. Opcode classes can then be
registered by instantiating and calling one of the two over-
loaded registration function templates. All CPOF code is
declared under the namespace csnd. In this section, we
discuss the base class templates, three simple cases of de-
rived plugins and their registration.

2.1 The Base Classes

The framework base classes are actually templates which
need to be derived and instantiated by the user code. The
most general of these is Plugin 1 . To use it, we program
our own class by subclassing it and passing the number of
output and inputs our opcode needs as its template argu-
ments:

#include <plugin.h>
struct MyPlug : csnd::Plugin<1,1> { };

The above lines will create a plugin opcode with one out-
put (first template argument) and one input (second tem-
plate argument). This class defines a complete opcode, but
since it is only using the base class stubs, it is also fully
non-op.

To make it do something, we will need to reimplement
one, two or three of its methods. As outlined above, this
base class is derived from the Csound structure OPDS and
has the following members:

• outargs: a Params object holding output argu-
ments.

• inargs: input arguments (Params).

• csound: a pointer to the Csound engine object.

• offset: the starting position of an audio vector
(for audio opcodes only).

1 All CPOF code is declared in plugin.h

• nsmps: the size of an audio vector (also for audio
opcodes only).

• init(), kperf() and aperf() non-op meth-
ods, to be reimplemented as needed (see sec. 2.2).

The other base class in CPOF is FPlugin, derived from
Plugin, which adds an extra facility for fsig (streaming
frequency-domain) plugins:

• framecount: a member to hold a running count
of fsig frames.

Input and output arguments, which in C are just raw point-
ers are conveniently wrapped by the Params class, which
provides a number of methods to access them according to
their expected Csound variable types.

2.2 Deriving opcode classes

Csound has two basic action times for opcodes: init and
perf-time. The former runs a processing routine once per
instrument instantiation (and/or once again if a re-init is
called for). Code for this is placed in the Plugin class
init() function. Perf-time code runs in a loop and is
called once every control (k-)cycle. The other class meth-
ods kperf() and aperf() are called in this loop, for
control (scalar) and audio (vectorial) processing. The fol-
lowing examples demonstrate the derivation of plugin clas-
ses for each one of these opcode types (i, k or a). Note that
k and a opcodes can also use i-time functions if they re-
quire some sort of initialisation.

2.2.1 Init-time opcodes

For init-time opcodes, all we need to do is provide an im-
plementation of the init() method:

struct Simplei : csnd::Plugin<1,1> {
int init() {
outargs[0] = inargs[0];
return OK;

}
};

In this simple example, we just copy the input arguments
to the output once, at init-time. Each scalar input type can
be accessed using array indexing. All numeric argument
data is real, declared as MYFLT, the internal floating-point
type used by Csound.

2.2.2 K-rate opcodes

For opcodes running only at k-rate (no init-time opera-
tion), all we need to do is provide an implementation of
the kperf() method:

struct Simplek : csnd::Plugin<1,1> {
int kperf() {
outargs[0] = inargs[0];
return OK;

}
};

Similarly, in this simple example, we just copy the input
arguments to the output at each k-period.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-268



2.2.3 A-rate opcodes

For opcodes running only at a-rate (and with no init-time
operation), all we need to do is provide an implementation
of the aperf() method:

struct Simplea : csnd::Plugin<1,1> {
int aperf() {
std::copy(inargs(0)+offset,

inargs(0)+nsmps, outargs(0));
return OK;

}
};

Because audio arguments are nsmps-size vectors, we get
these using the overloaded operator() for the inargs
and outargs objects, which takes the argument number
as input and returns a MYFLT pointer to the vector.

2.3 Registering opcodes with Csound

Once we have written our opcode classes, we need to tell
Csound about them, so that they can be used, for this we
use the CPOF function template plugin():

template <typename T>
int plugin(Csound *csound,

const char *name,
const char *oargs,
const char *iargs,
uint32_t thrd,
uint32_t flags = 0)

Its parameters are:

• csound: a pointer to the Csound object to which
we want to register our opcode.

• name: the opcode name as it will be used in Csound
code.

• oargs: a string containing the opcode output types,
one identifier per argument

• iargs: a string containing the opcode input types,
one identifier per argument

• thrd: a code to tell Csound when the opcode should
be active.

• flags: multithread flags (generally 0 unless the op-
code accesses global resources).

For opcode type identifiers, the most common types are:
a (audio), k (control), i (i-time), S (string) and f (fsig). For
the thread argument, we have the following options, which
depend on the processing methods implemented in our plu-
gin class:

• thread::i: indicates init().

• thread::k: indicates kperf().

• thread::ik: indicates init() and kperf().

• thread::a: indicates aperf().

• thread::ia: indicates init() and aperf().

• thread::ika: indicates init(), kperf() and
aperf().

We instantiate and call these template functions inside the
plugin dynamic library entry-point function on_load().
This function needs to implemented only once 2 in each op-
code library. For example:

#include <modload.h>
void csnd::on_load(Csound *csound){
csnd::plugin<Simplei>(csound,

"simple", "i", "i",
csnd::thread::i);

csnd::plugin<Simplek>(csound,
"simple", "k", "k",
csnd::thread::k);

csnd::plugin<Simplea>(csound,
"simple", "a", "a",
csnd::thread::a);

return 0;
}

will register the simple polymorphic opcode, which can
be used with i-, k- and a-rate variables. In each instantia-
tion of the plugin registration template, the class name is
passed as an argument to it, followed by the function call.
If the class defines two specific static members, otypes
and itypes, to hold the types for output and input argu-
ments, declared as

struct MyPlug : csnd::Plugin<1,2> {
static constexpr
char const *otypes = "k";
static constexpr
char const *itypes = "ki";
...

};

then we can use a simpler overload of the plugin registra-
tion function:

template <typename T>
int plugin(Csound *csound,

const char *name,
uint32_t thread,
uint32_t flags = 0)

For some classes, this might be a very convenient way
to define the argument types. For other cases, where op-
code polymorphism might be involved, we might re-use
the same class for different argument types, in which case
it is not desirable to define these statically in a class.

3. SUPPORT CLASSES

Plugins developed with CPOF can avail of a number of
helper classes for accessing resources in the Csound en-
gine. These include a class encapsulating the engine itself,

2 The header file modload.h, where on_load() is declared, con-
tains three boilerplate calls to Csound module C functions, required for
Csound to load plugins properly. For this reason, each plugin library
should also include this header only once, otherwise duplicate symbols
will cause linking errors.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-269



and classes for resource allocation, input/output access/-
manipulation, threads, and support for constructing objects
allocated in Csound’s heap.

3.1 The Csound Engine Object

Plugins are run by an engine which is encapsulated by
the Csound class. They all hold a pointer to this, called
csound, which is needed for some of the operations in-
voking parameters, or for some utility methods (such as
console messaging, MIDI data access, FFT operations).
The following are the public methods of the Csound class:

• init_error(): takes a string message and sig-
nals an initialisation error.

• perf_error(): takes a string message, an instru-
ment instance and signals a performance error.

• warning(): warning messages.

• message(): information messages.

• sr(): returns engine sampling rate.

• _0dbfs(): returns max amplitude reference.

• _A4(): returns A4 pitch reference.

• nchnls(): return number of output channels for
the engine.

• nchnls_i(): same, for input channel numbers.

• current_time_samples(): current engine time
in samples.

• current_time_seconds(): current engine time
in seconds.

• midi_channel(): midi channel assigned to this
instrument.

• midi_note_num(): midi note number (if the in-
strument was instantiated with a MIDI NOTE ON).

• midi_note_vel(): same, for velocity.

• midi_chn_aftertouch(),
midi_chn_polytouch(), midi_chn_ctl(),
midi_chn_pitchbend(): midi data for this chan-
nel.

• midi_chn_list(): list of active notes for this
channel.

• fft_setup(), rfft(), fft(): FFT operations.

In addition to these, the Csound class also holds a deinit
method registration function template for Plugin objects to
use:

template <typename T>
void plugin_deinit(T *p);

This is only needed if the Plugin has allocated extra re-
sources using mechanisms that require de-allocation. It is
not employed in most cases, as we will see below. To use it,
the plugin needs to implement a deinit() method and
then call the plugin_deinit() method passing itself
(through a this pointer) in its own init() function:

csound->plugin_deinit(this);

3.2 Audio Signals

Audio signal variables are vectors of nsmps samples and
we can access them through raw MYFLT pointers from in-
put and output parameters. To facilitate a modern C++ ap-
proach, the AudioSig class wraps audio signal vectors
conveniently, providing iterators and subscript access. Ob-
jects are constructed by passing the current plugin pointer
(this) and the raw parameter pointer, e.g.:

csnd::AudioSig in(this,inargs(0));
csnd::AudioSig out(this,outargs(0));
std::copy(in.begin(), in.end(),

out.begin());

3.3 Memory Allocation

For efficiency and to prevent leaks and undefined behaviour
we need to leave all memory allocation to Csound and re-
frain from using C++ dynamic memory allocators or stan-
dard library containers that use dynamic allocation behind
the scenes (e.g. std::vector).

This requires us to use the AuxAlloc mechanism imple-
mented by Csound for opcodes. To allow for ease of use,
CPOF provides a wrapper template class (which is not too
dissimilar to std::vector) for us to allocate and use as
much memory as we need. This functionality is given by
the AuxMem class:

• allocate(): allocates memory (if required).

• operator[]: array-subscript access to the allo-
cated memory.

• data(): returns a pointer to the data.

• len(): returns the length of the vector.

• begin(), cbegin() and end(), cend(): re-
turn iterators to the beginning and end of data.

• iterator and const_iterator: iterator types
for this class.

As an example of use, we can implement a simple delay
line [4] opcode, whose delay time is set at i-time, providing
a slap-back echo effect:

struct DelayLine : csnd::Plugin<1,2> {
csnd::AuxMem<MYFLT> delay;
csnd::AuxMem<MYFLT>::iterator iter;

int init() {
delay.allocate(csound,

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-270



csound->sr()*inargs[1]);
iter = delay.begin();
return OK;
}

int aperf() {
csnd::AudioSig in(this, inargs(0));
csnd::AudioSig out(this, outargs(0));

std::transform(in.begin(),in.end(),
out.begin(),[this](MYFLT s){
MYFLT o = *iter;

*iter = s;
if(++iter == delay.end())

iter = delay.begin();
return o;});

return OK;
}

};

In this example, we use an AuxMem interator to access
the delay vector. It is equally possible to access each ele-
ment with an array-style subscript. The memory allocated
by this class is managed by Csound, so we do not need to
be concerned about disposing of it. To register this opcode,
we do

csnd::plugin<DelayLine>(csound,
"delayline", "a", "ai",
csnd::thread::ia);

3.4 Function Table Access

Access to function tables has also been facilitated by a thin
wrapper class that allows us to treat it as a vector object.
This is provided by the Table class:

• init(): initialises a table object from an opcode
argument pointer.

• operator[]: array-subscript access to the func-
tion table.

• data(): returns a pointer to the function table data.

• len(): returns the length of the table (excluding
guard point).

• begin(), cbegin() and end(), cend(): re-
turn iterators to the beginning and end of the func-
tion table.

• iterator and const_iterator: iterator types
for this class.

An example of table access is given by an oscillator op-
code, which is implemented in the following class:

struct Oscillator : csnd::Plugin<1,3> {
csnd::Table tab;
double scl;
double x;

int init() {
tab.init(csound,inargs(2));
scl = tab.len()/csound->sr();
x = 0;
return OK;

}

int aperf() {
csnd::AudioSig out(this, outargs(0));
MYFLT amp = inargs[0];
MYFLT si = inargs[1] * scl;

for(auto &s : out) {
s = amp * tab[(uint32_t)x];
x += si;
while (x < 0) x += tab.len();
while (x >= tab.len())

x -= tab.len();
}
return OK;

}
};

The table is initialised by passing the relevant argument
pointer to it (using its data() method). Also note that, as
we need a precise phase index value, we cannot use itera-
tors in this case (without making it very awkward), so we
employ straightforward array subscripting. The opcode is
registered by

csnd::plugin<Oscillator>(csound,
"oscillator", "a", "kki",
csnd::thread::ia);

3.5 String Types

String variables in Csound are held in a STRINGDAT data
structure, containing a data member that holds the actual
string and a size member with the allocated memory size.
While CPOF does not wrap strings, it provides a translated
access to string arguments through the argument objects
str_data() function. This takes an argument index
(similarly to data()) and returns a reference to the string
variable, as demonstrated in this example:

struct Tprint : csnd::Plugin<0,1> {
int init() {
char *s = inargs.str_data(0).data;
csound->message(s);
return OK;

}
};

This opcode will print the string to the console. Note that
we have no output arguments, so we set the first template
parameter to 0. We register it using

csnd::plugin<Tprint>(csound, "tprint",
"", "S", csnd::thread::i);

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-271



3.6 Streaming Spectral Types

For streaming spectral processing opcodes, we have a dif-
ferent base class with extra facilities needed for their oper-
ation (FPlugin). In Csound, fsig variables, which carry
spectral data streams, are held in a PVSDAT data structure.

To facilitate their manipulation, CPOF provides the Fsig
class, derived from PVSDAT. To access phase vocoder
bins, a container interface is provided by pv_frame
(spv_frame for the sliding mode) 3 . This holds a series
of pv_bin (spv_bin for sliding) 4 objects, which have
the following methods:

• amp(): returns the bin amplitude.

• freq(): returns the bin frequency.

• amp(float a): sets the bin amplitude to a.

• freq(float f): sets the bin frequency to f.

• operator*(pv_bin f): multiply the amp of a
pvs bin by f.amp.

• operator*(MYFLT f): multiply the bin amp by
f

• operator*=(): unary versions of the above.

The pv_bin class can also be translated into a std::co
mplex<float>, object if needed. This class is also fully
compatible with the C complex type and an object obj can
be cast into a float array consisting of two items (or a float
pointer), using reinterpret_cast<float(&)[2]>
(obj) or reinterpret_cast<float*>(&obj). The
Fsig class has the following methods:

• init(): initialisation from individual parameters
or from an existing fsig. Also allocates frame mem-
ory as needed.

• dft_size(), hop_size(), win_size(), win
_type() and nbins(), returning the PV data pa-
rameters.

• count(): get and set fsig framecount.

• isSliding(): checks for sliding mode.

• fsig_format(): returns the fsig data format
(fsig_format::pvs, ::polar ::complex,
or ::tracks).

The pv_frame (or spv_frame) class contains the fol-
lowing methods:

• operator[]: array-subscript access to the spec-
tral frame

• data(): returns a pointer to the spectral frame data.

• len(): returns the length of the frame.

3 pv_frame is a convenience typedef for Pvframe<pv_bin>,
whereas spv_frame is Pvframe<spv_bin>

4 pv_bin is Pvbin<float> and spv_bin is Pvbin<MYFLT>

• begin(), cbegin() and end(), cend(): re-
turn iterators to the beginning and end of the data
frame.

• iterator and const_iterator: iterator types
for this class.

Fsig opcodes run at k-rate but will internally use an up-
date rate based on the analysis hopsize. For this to work, a
frame count is kept and checked to make sure we only pro-
cess the input when new data is available. The following
example class implements a simple gain scaler for fsigs:

struct PVGain : csnd::FPlugin<1, 2> {
static constexpr

char const *otypes = "f";
static constexpr

char const *itypes = "fk";

int init() {
if(inargs.fsig_data(0).isSliding()){
char *s = "sliding not supported";
return csound->init_error(s);
}
if(inargs.fsig_data(0).fsig_format()

!= csnd::fsig_format::pvs &&
inargs.fsig_data(0).fsig_format()
!= csnd::fsig_format::polar){
char *s = "format not supported";
return csound->init_error(s);

}
csnd::Fsig &fout =

outargs.fsig_data(0);
fout.init(csound,

inargs.fsig_data(0));
framecount = 0;
return OK;

}

int kperf() {
csnd::pv_frame &fin =

inargs.fsig_data(0);
csnd::pv_frame &fout =

outargs.fsig_data(0);
uint32_t i;

if(framecount < fin.count()) {
std::transform(fin.begin(),
fin.end(), fout.begin(),
[this](csnd::pv_bin f){
return f *= inargs[1];});

framecount =
fout.count(fin.count());

}
return OK;

}
};

Note that, as with strings, there is a dedicated method
in the arguments object that returns a ref to an Fsig class
(which can also be assigned to a pv_frame ref). This

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-272



is used to initialise the output object at i-time and then to
obtain the input and output variable data Csound process-
ing. The framecount member is provided by the base
class, as well as the format check methods. This opcode is
registered using

csnd::plugin<PVGain>(csound, "pvg",
csnd::thread::ik);

3.7 Array Variables

Opcodes with array inputs or outputs use the data structure
ARRAYDAT for parameters. Again, in order to facilitate
access to these argument types, CPOF provides a wrap-
per class. The framework currently supports only one-
dimensional arrays directly. The template container class
Vector, derived from ARRAYDAT, holds the argument
data. It has the following members:

• init(): initialises an output variable.

• operator[]: array-subscript access to the vector
data.

• data(): returns a pointer to the vector data.

• len(): returns the length of the vector.

• begin(), cbegin() and end(), cend(): re-
turn iterators to the beginning and end of the vector.

• iterator and const_iterator: iterator types
for this class.

• data_array(): returns a pointer to the vector
data.

In addition to this, the inargs and outargs objects
in the Plugin class have a template method that can be
used to get a Vector class reference. A trivial example is
shown below:

struct SimpleArray : csnd::Plugin<1, 1>{
int init() {
csnd::Vector<MYFLT> &out =

outargs.vector_data<MYFLT>(0);
csnd::Vector<MYFLT> &in =

inargs.vector_data<MYFLT>(0);
out.init(csound, in.len());
return OK;

}

int kperf() {
csnd::Vector<MYFLT> &out =

outargs.vector_data<MYFLT>(0);
csnd::Vector<MYFLT> &in =

inargs.vector_data<MYFLT>(0);
std::copy(in.begin(), in.end(),

out.begin());
return OK;

}
};

This opcode is registered using the following line:

csnd::plugin<SimpleArray>(csound,
"simple", "k[]", "k[]",
csnd::thread::ik);

3.8 Multithreading

CPOF supports the creation of threads through the Thread
pure virtual class. Developers wanting to avail of a sub-
thread for processing can derive their own thread class from
this and implement its run() method.

3.9 Constructing member variables

Plugin classes can, in general, be composed of member
variables of any type, built in or user defined. However,
we have to remember that opcodes are allocated and in-
stantiated by C code, which does not know anything about
classes. A member variable of a non-trivial class will not
be constructed at instantiation. This is perfectly fine for
all CPOF classes, which are designed to expect this. How-
ever, this might cause problems for other classes that are
external to the framework. In this case, a placement new
needs to be employed at init time to construct an object
declared as a plugin class member (and thus allocated in
Csound’s heap). To facilitate matters, CPOF includes a
template function that can be used to construct any mem-
ber objects:

template <typename T,
typename ... Types>
T *constr(T* p, Types ... args){

return new(p) T(args ...);
}

For instance, let’s say we have in our plugin an object
of type A called obj. To construct this, we just place the
following line in the plugin init() method:

csnd::constr(&obj,10,10.f);

where the arguments are the variable address, followed by
any class constructor parameters. Note that if the class al-
locates any resources, we will need to invoke its destructor
explicitly through csnd::destr(&obj) in a deinit()
method.

4. BUILDING THE OPCODE LIBRARY

To build a plugin opcode library, we require a C++ com-
piler supporting the C++11 [5] standard (-std=c++11),
and the Csound public headers. CPOF has no link depen-
dencies (not even to the Csound library). The opcodes
should be built as a dynamic/shared module (e.g .so on
Linux, .dylib on OSX or .dll on Windows).

5. EXAMPLES FROM THE CSOUND SOURCES

CPOF is already being used in the development of new
opcodes for Csound. It allows very compact and econom-
ical code, especially in conjunction with some of the more
modern facilities of C++. For example, the following class

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-273



template is used to generate a whole family of numeric
array-variable operators for i-time and k-rate processing 5 :

template<MYFLT (*op)(MYFLT)>
struct ArrayOp : csnd::Plugin<1, 1>{
int oprt(csnd::myfltvec &out,

csnd::myfltvec &in){
std::transform(in.begin(),in.end(),

out.begin(), [](MYFLT f){
return op(f);});

return OK;
}

int init() {
csnd::myfltvec &out =
outargs.myfltvec_data(0);

csnd::myfltvec &in =
inargs.myfltvec_data(0);

out.init(csound,in.len());
return oprt(out, in);

}
int kperf() {
return oprt(outargs.myfltvec_data(0),

inargs.myfltvec_data(0));
}

};

A plugin implementing i-time cos(x) where x is an array
is created with the following line:

csnd::plugin<ArrayOp<std::cos>>(csound,
"cos", "i[]", "i[]",csnd::thread::i);

whereas for a k-rate exp(x) is implemented by:

csnd::plugin<ArrayOp<std::exp>>(csound,
"exp", "k[]", "k[]",csnd::thread::ik);

Forty-six such operators are currently implemented re-
using the same code. Another twelve use a similar class
template for binary operations (2 inputs).

Another example shows the use of standard algorithms
in spectral processing. The following new opcode imple-
ments spectral tracing [6], which retains only a given num-
ber of bins in each frame, according to their amplitude. To
select the bins, we need to sort them to find out the ones we
want to retain (the loudest N). For this we collect all ampli-
tudes from the frame and then apply nth element sorting,
placing the threshold amplitude in element n. Then we just
filter the original frame according to this threshold. Here
we have the performance code (amps is a dynamically al-
located array belonging to the Plugin object).

int kperf() {
csnd::pv_frame &fin =

inargs.fsig_data(0);
csnd::pv_frame &fout =

outargs.fsig_data(0);

if(framecount < fin.count()) {
int n = fin.len()-(int)inargs[1];
float thrsh;

5 The convenience typedef myfltvec for Vector<MYFLT> is em-
ployed here

std::transform(fin.begin(),
fin.end(), amps.begin(),
[](csnd::pv_bin f){

return f.amp();});

std::nth_element(amps.begin(),
amps.begin()+n, amps.end());

thrsh = amps[n];

std::transform(fin.begin(),
fin.end(),fout.begin(),
[thrsh](csnd::pv_bin f){

return f.amp() >= thrsh ?
f : csnd::pv_bin(); });

framecount =
fout.count(fin.count());

}
return OK;

}

6. CONCLUSIONS

This paper described CPOF and its fundamental character-
istics. We looked at how the base classes are constructed,
how to derive from them, and register new opcodes in the
system. The framework is designed to support modern
C++ idioms and adopts the C++11 standard. All of the
code examples discussed in this paper are provided in op-
codes.cpp, found in the examples/plugin direc-
tory of the Csound source codebase 6 . CPOF is part of
Csound and is distributed alongside its public headers. Cso-
und is free software, licensed by the Lesser GNU Public
License.

7. REFERENCES

[1] V. Lazzarini, J. ffitch, S. Yi, J. Heintz, Ø. Brandtsegg,
and I. McCurdy, Csound: A Sound and Music Comput-
ing System. Springer Verlag, 2016.

[2] B. Stroustrup, The C++ Programming Language,
4th ed. Addison-Wesley, 2013.

[3] D. Abrahams and A. Gurtovoy, C++ Template
Metaprogramming: Concepts, Tools, and Techniques
from Boost and Beyond (C++ in Depth Series).
Addison-Wesley Professional, 2004.

[4] V. Lazzarini, “Time-domain signal processing,” in The
Audio Programming Book, R. Boulanger and V. Laz-
zarini, Eds. MIT Press, 2010, pp. 463–512.

[5] ISO/IEC, “ISO international standard ISO/IEC
4882:2011, programming language C++,” 2011. [On-
line]. Available: http://www.iso.org/iso/iso catalogue/
catalogue tc/catalogue detail.htm?csnumber=50372

[6] T. Wishart, Audible Design. Orpheus The Pantomine,
1996.

6 https://github.com/csound/csound

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-274

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
https://github.com/csound/csound

