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ABSTRACT

We present the problem of music renotation, in which the
results of optical music recognition are rendered in image
format, while changing various parameters of the notation,
such as the size of the display rectangle or transposition.
We cast the problem as one of quadratic programming. We
construct parameterizations of each composite symbol ex-
pressing the degrees of freedom in its rendering, and re-
late all the symbols through a connected graph. Some of
the edges in this graph become terms in the quadratic cost
function expressing a desire for spacing similar to that in
the original document. Some of the edges express hard lin-
ear constraints between symbols expressing relations, such
as alignments, that must be preserved in the renotated ver-
sion. The remaining edges represent linear inequality con-
straints, used to resolve overlapping symbols. The opti-
mization is solved through generic techniques. We demon-
strate renotation on several examples of piano music.

1. INTRODUCTION

A symbolic music encoding, such as MEI [1], MusicXML [2],
and many others, represents music in a hierarchical for-
mat, naturally suited for algorithmic manipulation. One of
the most important applications of symbolic music encod-
ings will likely be what we call music renotation [3], which
renders an image of the music notation, perhaps modified
in various ways. For instance, music renotation may pro-
duce a collection of parts from a score, show the music in
transposed form, display notation expressing performance
timing, or simply display the music in an arbitrarily-sized
rectangle. Music renotation may someday be the basis for
digital music stands, which will offer a range of possibili-
ties for musicians that paper scores do not, such as instant
and universal access to music, page turning, search, and
performance feedback. While these ideas could apply to
any type of music notation, our focus here is on common
Western notation.

As long as there has been interest in symbolic music rep-
resentations, there has been a parallel interest in rendering
these encodings as readable music, e.g. [4], [5]. There is a
well-developed craft surrounding this engraving problem,
predating algorithmic efforts by centuries. The essential
task is to produce music documents that are easy to read
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and make efficient use of space. Often the engraver must
choose between many possible equivalent representations
of the music, while considering the placing of symbols,
avoiding unnecessary overlap, preserving important align-
ments between symbols, and leading to a pleasing docu-
ment overall.

Our essential idea is to leverage the choices made in a
previous engraving to guide our renotated rendition. This
includes the many hard or categorical decisions made in
the original document, such as what notes should be beamed,
what stem directions to use, as well as the many other
choices that lead to equivalent notation in terms of pitch
and rhythm. However, we also seek to leverage the specific
soft choices of layout and spacing that give the music the
desired density of information while leading to high read-
ability. In essence, our renotated music seeks to copy as
much of the original layout as possible, while simultane-
ously satisfying the constraints imposed by our renotated
format, such as the dimensions of the display rectangle.

Our formulation of the renotation problems ties in natu-
rally to our work in optical music recognition (OMR). Our
Ceres system [6–8] is a longstanding research interest that
seeks to recognize the contents of a music document. From
the standpoint of recognition, it is almost impossible to
identify a musical symbol in an image without also know-
ing the precise location and parametrization of the symbol,
thus accurately registering the recognized symbol with the
image data. Therefore, a welcome consequence of OMR
is a precise understanding of the music layout, including
both the hard and soft choices, leaving our current effort
poised for high-quality renotation. This is the goal we ad-
dress here.

Our essential approach is to cast the renotation problem
as one of optimization, expressed in terms of a graph that
connects interdependent symbols. This view is much like
the spring embedding approach to graph layout, so popular
in recent years [9–12]. Spring embeddings seek to depict
the nodes and edges of a graph in a plane, with minimal
conflict between symbols, while clustering nearby nodes.
Unlike the graph layout problem, there is no single cor-
rect graph for music renotation. Rather, the construction
of an appropriate graph lies at the heart of the modelling
challenge. Our work bears some resemblance to the work
of Renz [13], who takes a spring embedding view of one-
dimensional music layout.

2. MODELING THE NOTATION

At present, we do not model the entire collection of possi-
ble musical symbols, limiting ourselves to the most com-
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mon ones, though providing generic mechanisms to extend
to larger collections. This restriction of attention paral-
lels the state of our OMR system, which recognizes only
a subset of possible notation, at present. It seems that any
music notation effort must eventually come into contact
with the “heavy tail” problem — there are a great many
unusual symbols, special cases, and exceptions to familiar
rules which, collectively, pose a formidable modeling chal-
lenge [14]. To avoid getting buried in the many details of
real-life music notation we focus here on the core of mu-
sical symbols, by which we mean those involved in con-
veying pitch and rhythm (beams, flags, stems, note heads,
ledger lines, accidentals, clefs, augmentation dots, time
signatures, key signatures, rests, etc.), with a few additions
to this core.

We divide the world of music symbols into composite and
isolated symbols. The isolated symbols, (clefs, acciden-
tals, etc.), are stand-alone symbols, represented by single
characters in a music font. The composite symbols, includ-
ing beams and chords, are formed by constrained configu-
rations of primitives, such as beams, stems, heads, ledger
lines, flags, etc. For purposes of renotation we view the
satellites, (accidentals, articulations, augmentation dots, etc.)
as isolated symbols, rather than as parts of a composite
symbol.

When drawing a composite symbol one must obey ba-
sic constraints between the constituent primitives. For in-
stance, the vertical positions of the note heads are fixed
in relation to the staff, while their horizontal positions are
fixed in relation to the note stem. These relations hold
with both regular and “wrong-side” note heads. After ac-
counting for these constraints, the only degrees of free-
dom in drawing a chord (not including its satellites) are
the horizontal and vertical locations of the stem endpoint.
The locations of all other primitives follow deterministi-
cally once the stem endpoint is fixed. Beamed groups have
more degrees of freedom in their rendering. After fix-
ing the corners of the beamed group one must also de-
cide upon the horizontal positions of the stems, leading to
n + 2 degrees of freedom for an n-note beamed group.
With these parametrizations in mind, we can think of all
symbols, composite and isolated, as parametrized objects,
where an isolated symbol is parametrized simply by its
two-dimensional location. In some cases, one coordinate
of an isolated symbol may be fixed, as with the vertical co-
ordinate of an accidental or clef. In such cases the symbol
has a one-dimensional parameter.

2.1 Overview of Approach

We cast the renotation problem as constrained optimiza-
tion, in particular, quadratic programming (QP) [15], in
which one minimizes a quadratic function subject to lin-
ear equality and inequality constraints. To this end we let
v1, . . . , vN be the musical symbols, isolated and compos-
ite, and let x = (x1, . . . , xN ) be the parameters for these
symbols. Thus the notation is completely determined by
x. We define a quadratic objective function, Q(x), mea-
suring the desirability of the parameter x. Q penalizes the
degree to which the renonated symbols’ relative positions

differ from those in the original notation — we simply try
to copy the original notation as much as possible. To cap-
ture hard constraints, such as the essential symbol align-
ments between rhythmically coincident notes, we include a
collection of linear equality constraints {atmx = bm}Mm=1,
which we will summarize as Ax = b. To capture the non-
overlapping constraints, we include inequality constraints
of the form {atm′x ≤ bm′}M ′

m′=1 summarized as A′x ≤ b′.
Thus we define our desired solution as

x̂ = arg min
x:Ax=b,A′x≤b′

Q(x) (1)

QP gives us a formulaic way of solving an optimization
problem, once posed in this manner.

To be more specific, we define our objective function
and constraints in terms of a graph, G = (E, V ). In our
graph, the parametrized symbols become the vertex set,
V = {v1, . . . , vN}. We define an edge set composed of
three types of edges between these vertices, soft, hard and
conflict, denoted by E = Es ∪Eh ∪Ec. Our graph will be
connected by the Es ∪ Eh edges, thus ensuring that there
are no notational “islands” that function independently of
the rest. For every edge, e = (vi, vj) ∈ Es we define a
quadratic term, qe(xi, xj), so that our objective function,
Q, decomposes as

Q(x) =
∑

e=(vi,vj)∈Es

qe(xi, xj)

Similarly, for each edge e = (vi, vj) ∈ Eh we define a
constraint, atex = be, where the vector, ae, is non-zero
only for the components corresponding to xi and xj . Anal-
ogously we have a constraint, atex ≤ be for each edge
e ∈ Ec. Thus A and b from Eqn. 1 become

A =


ate1
ate2

...
ateM

 b =


be1
be2
...

beM


where e1, . . . , eM is an arbitrary ordering of the edges of
Eh, with a similar definition for A′ and b′.

2.2 A More Detailed Look: Beamed Groups

We examine here the case of a beamed group in more de-
tail, so as to flesh-out our ideas. As already described, the
beamed group itself (without its satellites) is parametrized
by an (n + 2)-dimensional parameter, xb. Each note on
each chord of the beamed group may have an associated
accidental, while the heights of these accidentals are fixed
at the appropriate staff position. Thus we can write {xacci }
for the the horizontal positions of these accidentals, in-
dexed by i. Absent other considerations, there is an ideal
horizontal distance between a note head and its acciden-
tal. However, in some cases, particularly with a densely-
voiced chord, the accidentals may be placed far to the left
of this ideal to avoid overlap. For each accidental we in-
troduce a quadratic term, qacci (xb, x

acc
i ), that penalizes the

degree that the accidental displacement differs from that in
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the original image. We also must deal with potential over-
lap between the accidentals, and will return to this issue in
what follows.

Augmentation dots are more variable in their vertical place-
ment than are accidentals. In part, this results from the
need to avoid conflicts with the staff lines, however, densely-
voiced chords often require that augmentation dots be no-
tated far away from their nominal vertical positions to avoid
conflicts. We introduce quadratic terms qk,augi (xb, x

k,aug
i )

for k = 1, 2 where xk,augi is the kth coordinate of the
ith augmentation dot position. Again, this term penalizes
the difference between the actual displacement from the
note head and that observed in the original image. If each
member of a chord has a single augmentation dot, those
augmentation dots are constrained to share a single hori-
zontal position by adding appropriate linear equality con-
straints, proceeding analogously with additional augmen-
tation dots.

Note heads may have one or several symbols above (stem-
up) or below (stem-down) the note head, such as articula-
tions, ornaments, fingerings, etc. We will refer to these
symbols collectively as “markups.” The case of a single
markup is easy to handle, as such a symbol is usually cen-
tered over the note head, thus constraining its horizontal
position. This situation is handled in analogy with the ac-
cidental, in which we seek to replicate the vertical sepa-
ration found in the original image while constraining the
relative horizontal position to the note head. Occasionally
a note head has several associated markup symbols, requir-
ing that we infer the desired constraints. Often markups are
stacked, which calls for a shared horizontal position with
all of the symbols (equality constraints). Though some-
times one sees more elaborate configurations calling for
different kinds of alignment. For instance, one may have a
trill with two numbers above the trill indicating the fingers
to be used. Typically the pair of finger numbers would be
centered over the trill, calling for a different collection of
constraints. Suffice it to say that when multiple markups
are present we must infer the desired equality constraints
before we impose these.

2.3 Conflict Resolution

When we view a beamed group in isolation we would ex-
pect no conflicts between the various satellites surrounding
the note heads: their preferred relative positions are those
from the original image, which presumably do not overlap.
However, we now view a beamed group as a flexible object
having desired relationships with the other symbols com-
posing the notation. These other symbols exert influence
on the beamed group. As we allow the beam group to be
deformed away from its original presentation, we should
expect conflicts to develop between the symbols as they
inadvertently overlap one another.

We make two observations regarding symbol conflicts
that will guide our process for resolving them, not just with
beamed groups, but all conflicts that can arise. Consider,
first, the case of two rectangular bounding-box regions for
symbols vi and vj , (ail, a

i
h)×(bil, bih) and (ajl , a

j
h)×(b

j
l , b

j
h),

both expressed as the cross product of horizontal and ver-

Figure 1. A conflict between two symbols, vi and vj ,
can be resolved by moving the relative positions of their
bounding boxes in one of four ways, illustrated by the four
dotted rectangles.

tical intervals, as in Figure 1. There are four relevant linear
inequality constraints, the satisfaction of any one of these
ensuring the regions do not overlap:

ail ≥ ajh

aih ≤ ajl

bil ≥ bjh

bih ≤ bjl

These correspond to moving vj left, right, up, or down,
relative to vi. There is no general way to express a dis-
junction of linear inequality constraints as a conjunction
of linear inequality constraints, thus we cannot, with QP,
perfectly model the concept that a pair of symbols cannot
overlap. We resolve overlap between a symbol pair by se-
lecting one of the above four constraints to include in the
QP formulation.

The second observation is that it isn’t necessary to in-
clude all inequality constraints in the initial statement of
our optimization problem. That is, suppose we minimize
the objective function, Q(x), subject only to the equality
constraints. If the resulting configuration happens to sat-
isfy the inequality constraints, then we have found the fully
constrained (equality and inequality) optimum as well.

We extend this reasoning for our problem. While there
are, in principle, non-overlapping (inequality) constraints
between any pair of symbols in our notation, we do not
impose these at first, instead solving a simpler QP prob-
lem that allows the symbols to overlap. If the solution of
this problem contains overlap, we impose additional con-
straints to alleviate this problem. In particular, for each
overlapping symbol pair, we choose one of the inequality
constraint from the four constraints enumerated above that
is near to being satisfied. We further restrict our choice of
constraint to be consistent with the original notation. For
instance, if two symbols, vi and vj overlap but vj lies to
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the right of vi in the original notation, we could choose the
constraint aih ≤ ajl . This constraint would be expressed in
terms of the parameters xi, xj , and included into the set of
inequality constraints. This approach guarantees that our
QP problem has a non-trivial feasible solution, since the
layout of the original image is a feasible point. If vi and vj
overlap in the original image, we cannot resolve this sit-
uation, though such situations are uncommon and usually
occur in layout situations without obvious solutions.

We iterate the process of solving a QP problem, and im-
posing new constraints to resolve any newly-discovered
overlapping symbols. As all of the newly-added inequal-
ity constraints are consistent with the original notation, the
QP problem has a feasible region, thus remains well-posed.
Our final result is a solution to the QP problem with equal-
ity constraints, plus the additional constraints imposed through
the iterative process. In this way we approximate the no-
tion of non-overlapping constraints.

Our approach constrains us to solve layout problems in
a way that is similar to what has been done in the origi-
nal notation, rather than seeking novel ways of resolving
conflicts. In essence, this is consistent with the heart of
our proposed approach that leverages the existing notation
by deferring to the original notation. The problem of con-
structing good notation from a symbolic music represen-
tation containing no positional information is considerably
more challenging, and, perhaps, unnecessary.

2.4 Constructing the Symbol Graph

We have reduced the modeling problem to constructing a
graph on the symbol vertices with edges labeled as either
soft, hard or conflict, corresponding to quadratic terms,
equality constraints, and inequality constraints. The graph
for each system first begins by ordering the basic symbols
according to their left-to-right presentation in the original
image. These basic symbols include all notes, rests, clefs,
key signatures symbols, and bar lines. These are connected
in left-to-right manner with soft edges derived from the
original image. While a beamed group is composed of a
collection of notes, the edges are between the notes them-
selves, reflecting our desire to space approximately as done
in the original. These edges are only concerned with hor-
izontal distance. The other type of soft edges are used
to express the desired vertical distance such as the stem
length and the distance between markups and their associ-
ated note heads.

In addition, we introduce hard edges between various
pairs of symbols. There are several situations that give
rise to these equality constraints. For instance, “oppos-
ing chords” are pairs of “stacked” chords with a stem-up
chord on top and a stem-down chord on bottom. These are
recognized as single symbols by our OMR system, thus
our representation implicitly understands the need for the
alignment constraint. We add hard edges between such
chord pairs to force their horizontal alignment. Other sym-
bol alignments are detected by thresholding the actual po-
sitions of symbols, while these are also modeled with hard
edges that force their horizontal alignment. Our eventual
goal is to have the process entirely determined through in-

terpretation of the symbols’ meaning, for instance rhythm
recognition to determine simultaneous notes, though we
approximate this goal, at present, through thresholding.

While our analysis is presently limited to these basic sym-
bols, we can extend to a greater variety of symbols, in-
cluding slurs, text, dynamics, etc., by “anchoring” to the
basic symbols. In the most common case, such a symbol
is owned or related to a basic symbol. For instance, a dy-
namic symbol or text may be associated with a certain note,
requring its horizontal placement to align with the note. A
great variety of symbols can be included into the present
context by aligning them to the basic symbols with hard
edges that force the appropriate horizontal alignment while
using a quadratic term to encourage the vertical spacing in
the original image.

Figure 2 shows a graph that is constructed from the no-
tation, expressing the optimization problem we solve. Dif-
ferent colored edges in this figure correspond to different
types of quadratic penalty, alignment, and overlap con-
straint. As outlined above, we proceed by solving the opti-
mization problem defined by the hard and soft edges first.
In doing so, conflicts will arise between symbols that over-
lap in the “optimal” result. We then iterate the process
of imposing conflict edges (inequality constraints) between
the overlapped symbols until none remain. These conflict
edges, as well as the other types of edge are indicated in
the figure.

3. RENOTATION EXPERIMENTS

Here we present preliminary experiments demonstrating
our proposed ideas in several renotation scenarios. All the
image data, graphical models and generated notations in
our experiments can be accessed from the website: http:
//music.informatics.indiana.edu/papers/
smc17/. As mentioned before, we treat only a subset of
the possible realm of music notation, in an effort to develop
an overall approach without being hampered by the many
complexities of real-life notation. In particular, we restrict
our attention to the rhythm and pitch bearing symbols. We
believe the basic framework we have established extends
naturally to more complex notation.

Our first experiment displays music notation in panorama
mode, in which the image is composed of a single long
rectangle containing only a single system. This kind of
display avoids line breaks, so it is easier to produce as it
doesn’t need to accommodate the notion of a page. Some
people may prefer the simplicity of panorama notation in
some situations, though the strengths and weaknesses of
this notation mode are beyond the scope addressed here.

Panorama mode requires that we delete clef-key-signatures
that usually begin each line of music, as the single display
line makes these redundant. Otherwise, the display layout
follows the approach described above. As the bounding
box for the notation doesn’t lend itself to the pages of a
conference proceedings paper, we include links to two ex-
amples. The first example shows a page of the first move-
ment of Mozart’s Piano Sonata, K. 333, with the nota-
tion recognized and renotated in panorama mode from the
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Figure 2. Graph showing the types of edges between the vertices. Green: Soft horizontal edges (quadratic term); Blue: Soft
vertical edges (quadratic term); Magenta: Hard Edges (equality constraint); Red: Conflict edges (inequality constraint).
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Figure 3. A section from the first movement of Mozart’s Piano Sonata, K. 333 (Breitkopf and Härtel 1878 edition)

1878 Breitkopf and Härtel edition 1 . As with this exam-
ple, many of the most useful public domain editions are
quite old, though these editions are still excellent sources
for renotation, with a significant degree of expertise and
care supporting the engravings. The second shows a page
of the Rigaudon from Ravel’s Le Tombeau de Couperin,
using the Durand 1918 edition 2 .

Obviously the notation for these examples appears spare
without the additional symbols that describe style, dynam-
ics, articulations, etc., though one can still appreciate the
value of the proposed ideas based on these examples. While
some spacing issues are not resolved in the most readable
manner, the overall notation manages to preserve the ap-
propriate rhythmic alignment and produce somewhat natural-
looking notation in a fully automatic way.

1 http://music.informatics.indiana.edu/papers/
smc17/Mozart_panorama.pdf

2 http://music.informatics.indiana.edu/papers/
smc17/Ravel_panorama.pdf

The second pair of experiments show the same two pieces,
now notated in page mode, in Figures 3 and 4. The page
sizes were chosen to be considerably wider than the orig-
inal, thus forcing our algorithm to adjust the spacing to
achieve the customary alignment of the rightmost bar line
of each system. In addition to removing the original clef-
key-signatures at the start of each original staff line, we
added the appropriate key-clef-signatures at the beginnings
of our renotated staff lines.

4. CONCLUSIONS AND FUTURE WORK

Our renotation examples demonstrate work in progress,
thus there are still some issues that need to be resolved
in the definition of our objective function before the no-
tation has a professional, easy-to-read look. For instance,
smaller symbols, such as accidentals and articulations have
different requirements for spacing, and are not ideally han-
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Figure 4. A section from the Rigaudon from Ravel’s Le Tombeau de Couperin, (Durand and Cie. 1918 edition)

dled by the more generic approach to spacing we take at
present.

There are some aspects of this approach that are novel and
worth emphasizing. First of all, two-dimensional layout
of nearly anything can be a challenging problem, though
especially difficult in a domain such as music engraving,
where there is a well-developed, if not clearly formulated,
standard practice. Rather than try to explicitly formulate
the many aspects of good music notation, we seek to lever-
age existing examples, using these as a guide that will pull
our results toward reasonable layout. This includes both
the inter-symbol spacing as well as the categorical or dis-
crete decisions of music notation (stem direction, beaming,
etc.).

We have formulated the problem as a constrained opti-
mization, specifically as quadratic programming, thus al-
lowing us to incorporate many different objectives into our
final result. Furthermore, the approach is fully automatic.
It is worth noting, however, that no fully automatic ap-
proach will likely lead to the high quality notation we wish
to produce. The optimization approach we present can eas-
ily be extended to handle explicit human guidance in the
form of hand-specified constraints or additional terms for
the quadratic objective function. When these are added,
we still compute a global optimum that takes into account
all other aspects of the objective function, as well as other
constraints. Thus our approach provides a natural frame-
work for including human-supplied guidance.

There are additional applications of the proposed tech-
niques we have not presented within, but are still pursuing

currently, which we hope will further support the overall
framework we present. For instance, our symbolic repre-
sentation of the music data easily allows for small trans-
positions in which notes are shifted a few staff positions
up or down, while the transposed accidentals are handled
in a formulaic (and correct) way. It is worth noting that
this recipe for transposition runs into difficulty with larger
transpositions that call for changes with stem directions
and, perhaps, other notational choices.

Finally, we hope to soon pursue uses of notation designed
to convey performance characteristics, rather than read-
ability. For instance, we can present the horizontal posi-
tion of each note as proportional to its actual onset time,
thus allowing one to see the expressive use of timing, em-
bedded in the notation itself. Additional variations would
allow the visualization of fine-grained pitch, of interest for
both tuning and vibrato, as well as dynamics. Our work
with score alignment allows for estimation of the appro-
priate performance parameters, while the renotation ideas
may prove useful for conveying this information in a way
that is easy for the practicing musician to assimilate.

5. REFERENCES

[1] A. Hankinson, P. Roland, and I. Fujinaga, “The mu-
sic encoding initiative as a document-encoding frame-
work,” in ISMIR, 2011, pp. 293–298.

[2] M. Good, “Musicxml for notation and analysis,” The
virtual score: representation, retrieval, restoration,
vol. 12, pp. 113–124, 2001.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-292



[3] L. Chen, R. Jin, and C. Raphael, “Renotation from op-
tical music recognition,” in International Conference
on Mathematics and Computation in Music, 2015, pp.
16–26.

[4] L. Pugin, R. Zitellini, and P. Roland, “Verovio: A li-
brary for engraving mei music notation into svg,” in
ISMIR, 2014, pp. 107–112.

[5] H. W. Nienhuys and J. Nieuwenhuizen, “Lilypond, a
system for automated music engraving,” in Proceed-
ings of the XIV Colloquium on Musical Informatics
(XIV CIM 2003), 2003, pp. 167–72.

[6] C. Raphael and J. Wang, “New approaches to optical
music recognition.” in ISMIR, 2011, pp. 305–310.

[7] R. Jin and C. Raphael, “Interpreting rhythm in optical
music recognition.” in ISMIR, 2012, pp. 151–156.

[8] L. Chen, E. Stolterman, and C. Raphael, “Human-
interactive optical music recognition,” in ISMIR, 2016,
pp. 647–653.

[9] S. G. Kobourov, “Spring embedders and force di-
rected graph drawing algorithms,” arXiv preprint
arXiv:1201.3011, 2012.

[10] T. M. Fruchterman and E. M. Reingold, “Graph draw-
ing by force-directed placement,” Software: Practice
and experience, vol. 21, no. 11, pp. 1129–1164, 1991.

[11] P. Eades, “A heuristics for graph drawing,” Congressus
numerantium, vol. 42, pp. 146–160, 1984.

[12] T. Kamada and S. Kawai, “An algorithm for drawing
general undirected graphs,” Information processing let-
ters, vol. 31, no. 1, pp. 7–15, 1989.

[13] R. K., “Algorithms and data structure for a music no-
tation system based on guido notation,” Ph.D. disserta-
tion, Technischen Universität Darmstadt, 2002.

[14] D. Bainbridge and T. Bell, “The challenge of optical
music recognition,” Computers and the Humanities,
vol. 35, no. 2, pp. 95–121, 2001.

[15] D. Bertsekas, Nonlinear Programming. Athena Sci-
entific, 1995.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-293


