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ABSTRACT

Novelty detection is a well-established method for analyz-
ing the structure of music based on acoustic descriptors.
Work on novelty-based segmentation prediction has mainly
concentrated on enhancement of features and similarity
matrices, novelty kernel computation and peak detection.
Less attention, however, has been paid to characteristics
of musical features and novelty curves, and their contribu-
tion to segmentation accuracy. This is particularly impor-
tant as it can help unearth acoustic cues prompting percep-
tual segmentation and find new determinants of segmenta-
tion model performance. This study focused on spectral,
rhythmic and harmonic prediction of perceptual segmen-
tation density, which was obtained for six musical exam-
ples from 18 musician listeners via an annotation task. The
proposed approach involved comparisons between percep-
tual segment density and novelty curves; in particular, we
investigated possible predictors of segmentation accuracy
based on musical features and novelty curves. For pitch
and rhythm, we found positive correlates between segmen-
tation accuracy and both local variability of musical fea-
tures and mean distance between subsequent local maxima
of novelty curves. According to the results, segmentation
accuracy increases for stimuli with milder local changes
and fewer novelty peaks. Implications regarding prediction
of listeners’ segmentation are discussed in the light of the-
oretical postulates of perceptual organization.

1. INTRODUCTION

Musical segments are a representation of the perceived
structure of music, and hence carry its multifaceted, inter-
woven, and hierarchically organized nature. Transitional
points or regions between segments, which are called per-
ceptual segment boundaries, can emerge from temporal
changes in one or more musical attributes, or from more
complex configurations involving e.g. repetition and ca-
dences. Exhibited acoustic change can be measured to
yield an estimate of novelty with respect to previous and
upcoming musical events, with the aim to delineate per-
ceptual segment boundaries: for each instant, its degree
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of acoustic novelty is expected to predict the likelihood of
indicating a boundary. Segmentation accuracies for differ-
ent musical features, such as timbre and harmony descrip-
tors, can be obtained via Novelty detection (Foote, 2000)
approaches. The success of predicting musical segment
boundaries from acoustic estimates of novelty depends on
the level of structural complexity of a musical piece. For
instance, music that unambiguously evokes few sharp seg-
ment boundaries and clear continuity within segments to
listeners should exhibit high accuracy, whereas pieces that
promptmany boundaries and a rather heterogeneous profile
might be more challenging for prediction. Music is how-
ever multidimensional, which implies that accuracy for a
given stimulus could depend on the musical feature or fea-
tures under study.

This work focuses on the assessment of possible predic-
tors of segmentation accuracy that could be obtained di-
rectly frommusical features or from novelty points derived
from these features. We explored musical features of differ-
ent types, because listeners rarely focus on a single dimen-
sion of music. To illustrate possible applications of the pro-
posed approach, one could imagine a segmentation system
that could extract candidate features from a particular musi-
cal piece (Peiszer, Lidy, & Rauber, 2008), and discard any
features that would not seem to be informative of musical
changes in order to focus only on those changes that would
be deemed relevant for a listener. This would result in more
efficient prediction, as the systemwould not require to com-
pute subsequent structure analysis steps for irrelevant fea-
tures. Our endeavor is motivated by the direct impact of
music segmentation on other areas of computational music
analysis, including music summarization, chorus detection,
and music transcription, and its relevance for the study of
human perception, as it can deepen our understanding on
how listeners parse temporally unfolding processes.

MIR (Music Information Retrieval) studies on segmenta-
tion and structure analysis typically require perceptual data
for algorithm evaluation. Often, data collection involves
the indication of segment boundaries from one or few listen-
ers for a large amount of musical examples; this results in
a set of time points for each piece. In contrast, approaches
on music segmentation within the field of music perception
and cognition commonly involve the collection of percep-
tual boundaries from multiple participants in listening ex-
periments; the collected data is often aggregated across lis-
teners for its analysis. Kernel Density Estimation (KDE,
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Silverman, 1986) has been used in recent segmentation
studies (e.g. Bruderer, 2008; Hartmann, Lartillot, & Toivi-
ainen, 2016b) to obtain a precise aggregation across bound-
ary data. This approach consists of obtaining a probabil-
ity density estimate of the boundary data using a Gaussian
function; in a KDE curve, temporal regions that prompted
boundary indication from many listeners are represented
as peaks of perceptual boundary density. This continuous
representation of perceptual segment boundary probability
has been used to compare different stimuli, groups of partic-
ipants, and segmentation tasks (Bruderer, 2008; Hartmann
et al., 2016b).
Prediction of perceptual boundary density in the audio

domain often involves the computation of novelty curves
(Foote, 2000), which roughly describe the extent to which
a temporal context is characterized by two continuous seg-
ments separated by a discontinuity with respect to a given
musical feature. Recent studies have compared novelty
curves with perceptual boundary density curves (Hartmann,
Lartillot, & Toiviainen, 2016a) and compared peaks de-
rived from both curves (Mendoza Garay, 2014), showing
that novelty detection can predict segmentation probabili-
ties derived from numerous participants.
A preliminary step in novelty detection and other seg-

mentation frameworks consists of the extraction of a mu-
sical feature, which will determine the type of musical con-
trast to be detected. Timbre, tonality, and to some extent
rhythm (Jensen, 2007) have been considered to be impor-
tant features for structural analysis. Relatively high predic-
tion of musical structure has been found for two musical
features: MFCCs (Mel-Frequency Cepstral Coefficients)
for timbre description (Foote, 2000) and Chromagram or
similar features (Serrà, Muller, Grosche, & Arcos, 2014)
for description of pitch changes; also combined approaches
have been proposed (Eronen, 2007). The segmentation ac-
curacy achieved by novelty curves seems to highly depend
on the musical feature that is used, and on the choice of
temporal parameters for feature extraction (Peeters, 2004).
In addition, different musical pieces might require differ-
ent musical features for optimal prediction (Peiszer et al.,
2008); as pointed out by McFee and Ellis (2014), struc-
ture in pop and rock is frequently determined by harmonic
change, whereas jazz is often sectioned based on instrumen-
tation. No single feature can optimally predict all musical
examples; certain features are more appropriate than others
depending on particular aspects of musical pieces (Smith &
Chew, 2013).
This mechanism is however not well understood at

present: it is unclear what characteristics of musical fea-
tures contribute to the segmentation accuracy for a given
musical piece. Addressing this issue would be important
since it would enable the possibility to select optimal musi-
cal features for further novelty detection, avoiding the com-
putation of novelty curves that would not yield satisfactory
results; it would also help to develop better alternatives to
the novelty detection approach, with the aim of reducing
computational costs.
To analyze the impact of different factors associated to

novelty curves upon segmentation and compare different

segmentation algorithms, a number of performance mea-
sures have been proposed, such as precision, recall, and
F-measure (Lukashevich, 2008); also correlation between
time series has been applied for this purpose (Hartmann et
al., 2016a). One of the factors that has been shown to highly
contribute to the segmentation accuracy is the width of the
novelty kernel (e.g. Hartmann et al., 2016a), which roughly
refers to the temporal context with respect to which novelty
is estimated for each time point.
However, to the best of our knowledge, no study has

systematically investigated what specific aspects of nov-
elty curves contribute to their accuracy for a given stim-
ulus. It would be relevant to investigate what characteris-
tics of novelty curves relate to their accuracy, as this could
allow to predict the relative suitability of a novelty curve
for a given stimulus without the need of direct comparison
against ground truth, and to bypass computation of novelty
curves that would be assumed not to deliver satisfactory
performance with regard to a particular stimulus. From the
viewpoint of music perception, it would be useful to bet-
ter understand the extent to which musical characteristics
perceived by listeners are directly apparent from novelty
curves, and to gain more knowledge on the types of musi-
cal changes that prompt both boundary perception and high
novelty scores.
Recently, Hartmann et al. (2016a) studied segmentation

accuracy achieved for concatenated musical pieces using
different novelty curves. It was found that optimal predic-
tion of perceptual segment boundary density involves the
use of large kernel widths; the study also highlights the role
of rhythmic and pitch-based features on segmentation pre-
diction. This study is a follow-up to the paper by Hartmann
et al. (2016a), as it focused further on prediction of percep-
tual segmentation density via novelty detection, and exam-
ined the same musical pieces; in particular, we investigated
one of the perceptual segmentation sets (an annotation seg-
mentation task performed by musician listeners) studied by
Hartmann et al. (2016a), and explored perceptual segmen-
tation density and novelty curves for individual musical
stimuli. The aim of the present study was to understand
whether or not local variability of musical features and dis-
tance between novelty peaks are related with the accuracy
of segmentation models. The following research questions
guided our investigation:

1. What specific aspects of musical stimuli that account
for segmentation accuracy can be directly described
from musical features?

2. What stimulus-specific attributes of novelty curves de-
termine optimal segmentation accuracy?

As regards the first research question, we expected to find
an inverse relationship, dependent on musical stimulus, be-
tweenmagnitude of local feature variation and accuracy ob-
tained via novelty detection. For instance, musical stimuli
displaying unfrequent local tonal contrast would yield op-
timal segmentation accuracy via tonal novelty curves. The
rationale behind this hypothesis is that if there is not much
local change in a feature, then the local changes that occur
in that feature should bemore salient. One of themost basic
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Figure 1. General design of the study.

Gestalt principles, the law of Prägnanz, relates to this ratio-
nale, because it states that, under given conditions, percep-
tual organizationwill be as “good” as possible, i.e. percepts
tend to have the simplest, most stable and most regular or-
ganization that fits the sensory pattern (Koffka, 1935).
Regarding the second question, we expected that stimuli

yielding higher accuracy for a given feature would exhibit
a relatively large temporal distance between novelty peaks
for that feature. Although this relationship could depend
on other factors such as tempo and duration, we believed
that the absolute time span between peaks would serve as
a rough predictor of accuracy for the reasons above men-
tioned regarding the law of Prägnanz. To give an exam-
ple, optimal accuracy was expected for stimuli character-
ized by long and uniform segments with respect to instru-
mentation that would be delimited by important timbral
changes, whereas music characterized by more frequent
timbral change and gradual transitions would yield lower
accuracy for a timbre-based novelty measure.

2. METHOD

Figure 1 illustrates the research design utilized in our in-
vestigation. The upper part of the figure concerns compu-
tational prediction of segmentation via novelty detection
and a perceptual modelling of collected segmentation data
via perceptual segmentation density estimation. These two
topics were more thoroughly covered in Hartmann et al.

(2016b) and Hartmann et al. (2016a), respectively. The
bottom part of the figure, specifically the solid line con-
nections, refer to investigation of correlates of perceptual
boundary density prediction, which is themain focus of this
study.

2.1 Segmentation Task

To obtain perceptual segment boundary density of the stim-
uli, we collected boundary data from participants via a lis-
tening task that involved an offline annotation. This non
real-time segmentation task, called annotation task, is de-
scribed with more detail in Hartmann et al. (2016b). The
reason for analyzing prediction of non real-time segmenta-
tion was to reduce the number of intervening factors: com-
pared to a real-time segmentation, boundary placements ob-
tained via offline segmentation are probably better aligned
in time with respect to musical changes; also, inter-subject
agreement has been found to be higher for offline than for
online tasks (Hartmann et al., 2016b).

2.1.1 Subjects

18 musicians (11 males, 7 females) with a mean age of
27.61 years (SD = 4.45) and an average musical training of
14.39 years (SD = 7.49) took part of this experiment. They
played classical (12 participants) and non-classical musi-
cal styles (6 participants) such as rock, pop, folk, funk, and
jazz.

2.1.2 Stimuli

We selected 6 instrumental music pieces; two of them
lasted 2 minutes and the other four were trimmed down to
this length for a total experiment duration of around one
hour. The pieces (see Hartmann et al., 2016a) comprise a
variety of styles and considerably differ from one another
in terms of musical form; further, they emphasize aspects
of musical change of varying nature and complexity.

2.1.3 Apparatus

An interface in Sonic Visualizer (Cannam, Landone, & San-
dler, 2010) was prepared to obtain segmentation boundary
indications from participants. Stimuli were presented in
randomized order; for each stimulus, the interface showed
its waveform as a visual-spatial cue over which boundaries
would be positioned (subjects were asked to focus solely
on the music). Participants used headphones to play back
the music at a comfortable listening level, and both key-
board and mouse were required to complete the segmenta-
tion task.

2.1.4 Procedure

Written instructions were given to participants; these in-
cluded a presentation of the interface tools and a task de-
scription, which consisted of the following steps:

1. Listen to the whole musical example.

2. Indicate significant instants of change while listening
to the music by pressing the Enter key of the computer.
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3. Freely play back from different parts of the musical
example and make the segmentation more precise by
adjusting the position of boundaries; also removal of
any boundaries indicated by mistake is allowed.

4. Rate the perceived strength of each boundary (ratings
of boundary strengthwere collected for another study).
Start over from the first step for the next musical ex-
ample.

2.2 Perceptual Segment Boundary Density

We obtained a perceptual boundary density estimate across
the segmentation data collected frommusician participants;
this estimate would be further compared against novelty
curves to assess their accuracy. The perceptual boundary
data of all participants was used to obtain a curve of per-
ceptual segmentation density using a KDE bandwidth of
1.5 s; values around this bandwidth were found optimal
for comparison between perceptual segmentation densities
(Hartmann et al., 2016b). From each tail of the perceptual
density curves, 6.4 s were trimmed for more accurate com-
parisons with novelty curves (see below).

2.3 Feature Extraction and Novelty Detection

We computed novelty curves from 5 musical features
describing timbre (Subband Flux), rhythm (Fluctuation
Patterns), pitch class (Chromagram) and tonality (Key
Strength, Tonal Centroid) using MIRtoolbox 1.6.1 (Lar-
tillot & Toiviainen, 2007); see Hartmann et al. (2016a)
for a description of the features used for novelty detection.
For each feature, a self-similarity matrix was obtained by
computing the cosine distance between all possible pairs
of feature frames. Novelty for each time point was com-
puted via convolution between each self-similarity matrix
and aGaussian checkerboard kernel (Foote, 2000)with half
width of 11 s; large kernel sizes have been previously used
to overcome high levels of detail in novelty curves (e.g.
Hartmann et al., 2016a).
As done with the perceptual density curves, we truncated

the novelty curves by trimming 6.4 s from each extreme
to avoid edge effects. We chose the smallest value that
would eliminate, for all stimuli, any novelty spikes caused
by the contrast between music and silence in the beginning
and end of tracks; trimming the extremes of the novelty
curves also increased the number of novelty points that de-
rive from a full checkerboard kernel. Once the novelty
curves were computed, we also trimmed 6.4 s from the ex-
tremes of each dimension of the musical features in order
to obtain the predictors of accuracy described below.

2.4 Characterization of Musical Features and Novelty
Curves

Subsequently, we computed two characterizations in order
to estimate feature local discontinuity and temporal dis-
tance between music structure changes. From each musi-
cal feature matrix 𝐹 we calculated mean Feature Flux, an
estimate of the amount of local variation; Feature Flux is
the Euclidean distance between successive feature frames.

First, for each time series 𝐹𝑑, where 𝑑 corresponds to a fea-
ture dimension, the squared difference between successive
time points is obtained. Next, a flux time series 𝑣 is ob-
tained as the squared root of the sum across dimensions:

𝑣𝑡 =
√√√
⎷

𝑁
∑
𝑑=1

(𝐹𝑑(𝑡) − 𝐹𝑑(𝑡 − 1))2

Finally, mean Feature Flux is obtained by averaging the
flux time series 𝑣 across time points:

Feature Flux = 1
𝐾

𝐾
∑
𝑡=1

𝑣𝑡

From each novelty curve, we obtained Mean Distance
Between Subsequent Peaks (MDSP), which describes the
peak-to-peak duration (in seconds) of novelty curves. To
compute this estimate, we first obtained from the novelty
curve a vector of novelty peak locations 𝑣, where 𝑣𝑖 corre-
sponds to the i𝑡ℎ peak, and 𝑁 corresponds to the number
of peaks; MDSP was calculated as follows:

MDSP = 1
𝑁

𝑁
∑
𝑖=1

(𝑣𝑖 − 𝑣𝑖−1)

2.5 Segmentation Accuracy and its Correlates

We compared perceptual segmentation density and novelty
curves to obtain segmentation accuracy. To this end, we
performed correlations between novelty and perceptual seg-
mentation density for each stimulus and musical feature.
We focused on the possible relationship between accuracy

and the aforementioned characterizations of musical fea-
tures and novelty peaks. Hence, for each feature we corre-
lated across stimuli the accuracywith Feature Flux andwith
MDSP. In order to perform these correlations, the accura-
cies of each feature required to follow an approximately
normal distribution, so we subsequently transformed accu-
racies via Fisher’s 𝑧 transformation of 𝑟. The normaliza-
tion of 𝑍𝑟 involved the calculation of effective degrees of
freedom to correct for temporal autocorrelation (Pyper &
Peterman, 1998).

3. RESULTS

3.1 Prediction of Perceptual Segmentation Density

Figure 2 shows the correlation between novelty curves and
perceptual boundary density for each stimulus. The pre-
diction accuracies were found to vary depending on stim-
ulus; for instance, Smetana yielded very high correlations,
whereas these were rather low for Couperin. Also, for any
given stimulus, accuracy differed according to the feature
and feature type used for novelty detection; for instance,
Smetana yielded higher accuracy for pitch-based features
than for rhythmic and spectral-based features. Interest-
ingly, no single novelty feature successfully predicted per-
ceptual boundary density for all stimuli.
At this point, it might be relevant to illustrate the data

analyzed in this study and at the same time explore two
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Figure 2. Correlation between novelty curves and percep-
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musical stimuli that were found to be contrasting with re-
spect to their prediction. Figure 3 visually compares rep-
resentations for two stimuli that yielded optimal and worst
accuracies for Tonal Centroid, Smetana and Couperin, re-
spectively. The upper graphs show the Tonal Centroid time
series for each stimulus; dimensions 1-2, 3-4 and 5-6 cor-
respond to pairs of numerical coordinates for the circle of
fifths, minor thirds, and major thirds, respectively. The
middle graphs present novelty curves for Tonal Centroid,
which result from the representations in the upper graphs.
The lower graph shows perceptual segmentation density
based on listeners’ segmentation. Some clear differences
can be seen between the profiles for Smetana andCouperin.
The three most contrasting peaks of perceptual density for
Smetana correspond to changes of key: at 40 s the music
changes from an F key to a fugue in G min, at 66 s the
F melody is reprised in C♯, and at 104 s begins a similar
fugue transposed to F min. These changes are quite clear in
the Tonal Centroid representation, yielding a relatively ad-
equate novelty prediction, although the rather gradual tran-
sition at around 66 s does not yield a stark novelty peak.
In contrast, the Tonal Centroid time series of Couperin

does not allow for a straightforward acoustic interpretation
of the perceptual segmentation density profile. According
to the peaks of perceptual density, listeners seem to base
their indications primarily on the ending of cadences; these
are characterized by the use of heavy ornamentation (e.g.
mordents) and chords, which are rather salient because the
piece is almost exclusively two-voiced. Due to these cues,
listeners seem to place more segment boundaries on end-
ings of melodies than on beginnings, for instance at 23 s.
In comparison to this, Tonal Centroid and its correspond-
ing novelty curve would describe slightly delayed musical
changes, as harmonic transitions become apparent only af-
ter enough development of subsequent melodic material.

Another reason behind the highly inaccurate prediction is
that listeners placed boundaries for changes of register,
rests and durational changes, which might partly explain
the higher accuracies obtained for spectral and rhythmic
features.

3.2 Finding Predictors of Segmentation Accuracy

Musical Feature Feature Flux MDSP

Subband Flux .54 –.03
Fluctuation Patterns –.30 .11
Chromagram –.68 .27
Key Strength –.74 .47
Tonal Centroid –.66 .50

Table 1. Correlation between z-transformed accuracy and
characterizations of musical features (Feature Flux) and
novelty curves (MDSP).

Subsequently, we analyzed characterizations of extracted
features and of novelty curves derived therefrom, looking
for correlates of accuracy. We focused on Feature Flux,
a global estimate of the extracted features, and on MDSP,
which was obtained from novelty curves, to find whether
or not these would be indicative of novelty curve accu-
racy. Table 1 shows the correlation between segmentation
accuracies and the obtained characterizations of musical
features and novelty curves. We found a strong negative
correlation between accuracy and Feature Flux for pitch-
based features; as regards accuracy and MDSP, we ob-
tainedmoderate to strong positive correlations for tonal fea-
tures (strong andmoderatemean |𝑟| > .5 and .3 < |𝑟| < .5
respectively, following Cohen, 1988). Although these re-
sults did not reach statistical significance at 𝑝 < .05, some
interpretations can still be made. According to the results,
accuracy increases for stimuli with fewer local change in
pitch content and less peaks in pitch-based novelty curves.
A similar pattern of results was found for rhythm; we ob-
tained for Fluctuation Patterns a moderate negative cor-
relation between Feature Flux and accuracy, and a weak
positive correlation between MDSP and accuracy. Tim-
bre seemed to yield an opposite trend, at least for Feature
Flux; Subband Flux exhibited a strong positive correlation
between Feature Flux and accuracy, and no or very weak
correlation between MDSP and accuracy. This suggests
that high accuracy is associated with more local variability
of spectral fluctuation.

4. DISCUSSION

Understanding which specific aspects of musical pieces in-
fluence novelty-based segmentation prediction is a crucial
but challenging issue. One possible way to address this
problem is to focus on the particulars of this approach and
tackle the question of what characteristics of musical fea-
tures and their respective novelty curves predict segmenta-
tion accuracy for different musical pieces. This study tries
to fill the gap in this respect, and aims to open a discus-
sion on the possibility of predicting accuracy directly from
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Figure 3. Tonal Centroid, novelty of Tonal Centroid and perceptual boundary density for stimuli Smetana and Couperin.

musical feature characteristics; we believe that automatic
segmentation systems could optimize their parameters for
stimuli of different idioms and that such an approach would
lead to an increase in accuracy.
Regarding the validity of the approach, we also highlight

that our method for studying segmentation involves amass-
ing annotations from multiple listeners for the same stim-
ulus; this possibility has been previously explored only by
few studies on segmentation prediction (Mendoza Garay,
2014; Hartmann et al., 2016a). In contrast, MIR studies on
music segmentation are often based on data coming from
one or few annotators; the computation of a KDE is usually
not needed since the set of annotated segment boundaries
is directly compared against peaks picked from a novelty
curve. In this sense, analyses of perceptual segmentation
based on data that is probably more representative of the
musician population should be useful for better understand-
ing both perception and prediction of musical structure.
This section examines our research questions in light of

the proposed analysis, and assesses the extent to which the
stated hypotheses could be supported. Finally, we conclude
this article with possible directions for future research.

4.1 Segmentation Accuracy

The first step to address the research questions was to inves-
tigate the accuracy to predict perceived boundaries yielded
by different musical features for different musical exam-
ples. As shown in Figure 2, accuracy seems to highly vary

according to musical piece, motivating further analyses on
novelty detection that focus on each piece separately. It
is also apparent that no single algorithm is robust for pre-
diction of all examples, suggesting the importance of in-
corporating combinations of multiple features (Hartmann
et al., 2016a; Müller, Chew, & Bello, 2016), multiple time
scales (Kaiser & Peeters, 2013; Gaudefroy, Papadopoulos,
& Kowalski, 2015), and other aspects of segmentation (e.g.
repetition principles, see Gaudefroy et al., 2015; Paulus
& Klapuri, 2006) into novelty approaches. Overall, how-
ever, the results seem to support the idea that performance
in structural analysis heavily may depend more on musi-
cal stimuli than on the algorithm used or the choice of pa-
rameters (Peiszer et al., 2008), which could serve to justify
subsequent steps of our analysis.

4.2 Feature-based Prediction of Novelty Detection
Performance

Our first hypothesis was that accuracy obtained via novelty
detection would increase for stimuli with low local varia-
tion ofmusical features. In support with this hypothesis, we
overall found Feature Flux to be a good predictor of correla-
tion between perceptual segmentation density and novelty
(Table 1), and a same pattern of results for pitch-based and
rhythmic features. This suggests, for these features, that in-
creased local feature continuity may be indicative of higher
accuracy of novelty curves.
The second hypothesis of this study was that accuracy
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would increase for stimuli with more distant novelty peaks.
Indeed, mean distance between subsequent peaks was
found to be somewhat indicative of the accuracy of nov-
elty curves with respect to perceptual segmentation density.
This suggests, particularly for tonal features, that longer
novelty peak-to-peak duration is associated with higher cor-
relation between detected novelty and perceptual segment
density.
Focusing on pitch-based and rhythmic features, the results

indicate that high local variability is associated with low
accuracy. A possible interpretation is that music character-
ized by few local changes in pitch or rhythm often involves
few, highly contrasting pitch-based or rhythmic structural
boundaries. For instance, rhythmically stable melodies are
clearly separated by highly discernible rests and long notes
in Dvořák. This could be interpreted in the light of theoret-
ical approaches to musical expectation (Narmour, 1992),
according to which similarity between successive events
generates the expectation of another similar event. If even-
tually this expectation is not satisfied, a sense of closure
may be perceived, prompting the indication of a segment
boundary; this may explain why, for example, accurate
tonal-based segmentation predictions exhibit low variabil-
ity at a local level and often involve few, perceptually stark
boundaries that delimit homogeneous groupings of events.
Related to our previous result, we found that novelty

curve characteristics can be used as predictors of accu-
racy: larger distance between subsequent novelty peaks
was found to result in higher novelty accuracy (Table 1),
especially for tonal features. As aforementioned, this rela-
tionship relates to the properties of “good” organizations
proposed by Gestalt theorists (Koffka, 1935). In this sense,
music characterized by novelty peaks that are clearly iso-
lated should yield higher accuracy as they would relate to
perceptually salient musical changes.
We should highlight that the features yielding highest cor-

relations with accuracy were tonal. It is possible that in-
terpretations derived via perceptual organization rules and
expectation violation are better applicable to the case of
prediction via tonal features because these features focus
unambiguously on changes in perceived tonal context (and
not on e.g. loudness changes). In contrast, other descrip-
tions used are somewhat more vague: i) Subband Flux
discontinuities encompass changes of instrumentation, reg-
ister, voicing, articulation, and loudness; ii) Fluctuation
Pattern changes could be attributed to rhythmic patterns,
tempo, articulation, and use of repetition; iii) changes in
Chromagram are manifested in pitch steps, pitch jumps,
and use of chords. In this respect, tonal features consider
a single dimension of musical change, whereas other fea-
tures analyzed in this study may yield more intricate de-
scriptions.
Accuracy seemed to increase for stimuli with little local

change and more distance between peaks (Table 1), how-
ever Subband Flux seemed to yield an opposite trend. In
this regard, high local variability of changes in instrumen-
tation, register, loudness, etc., seems to be associated with
higher accuracy. It could be the case that musical pieces
with high local spectral change and multiple novelty peaks

are also characterized by few structural sections of long
duration, and yield a relatively straightforward prediction;
for instance, Genesis contains multiple short sounds and
effects, yet its sections are clearly delimited by important
instrumentation changes, which probably had a positive ef-
fect on accuracy. Again, stylistic information might help
to disentangle these and other problems regarding segmen-
tation accuracy.

4.3 General Discussion

One of the main aims of this study was to find out methods
to select musical features that would be efficient in segmen-
tation prediction for a given stimulus; to this end, we inves-
tigated the relationship between accuracy and characteriza-
tions of musical features and novelty curves. According to
the results, for most features there is an inverse relationship
between local variability and accuracy, and a direct rela-
tionship between mean distance between subsequent nov-
elty peaks and accuracy. This suggests that stimuli whose
features are characterized by low variation between succes-
sive time points, and whose novelty curves have few peaks,
are likely to yield higher segmentation prediction accuracy.
A possible reason that explains these results is that music
with infrequent musical change often yields perceptually
salient boundaries; according to the Gestalt rules of per-
ceptual organization, similar events that are proximal in
time are grouped together, creating a strong sense of clo-
sure whenever a dissimilar event is perceived. Following
this interpretation, if a given musical dimension changes
frequently, an increase of listeners’ attention towards other
dimensions evoking strong closure may occur during seg-
mentation.

4.4 Considerations for Further Research

Since this study focused on the analysis of segmentations
of the samemusical pieces frommultiple listeners, the num-
ber of segmented stimuli does not suffice to draw solid con-
clusions about the correlates of segmentation accuracy; this
should be considered a major methodological caveat. More
musical stimuli are clearly needed to assess the generaliza-
tion ability of our results; future studies should in this re-
spect increase the number of musical stimuli used for per-
ceptual segmentation tasks while maintaining a satisfactory
participant sample size. As regards the sample of partic-
ipants used, this study only focused on musician listeners,
mainly followingMIR studies, which recruit expert annota-
tors for the preparation of musical structure data sets. Fur-
ther work should concentrate on annotation segmentation
from nonmusicians in order to understand accuracy of nov-
elty curves with regards to the majority of the population.
Another issue to consider is that the novelty detection ap-

proach is designed to yield maximum scores for high con-
tinuity within segments and high discontinuity at segmen-
tation points, so in this sense it is not surprising that mu-
sic exhibiting clear discontinuity between large sequences
of homogeneity for a given feature will yield higher seg-
mentation accuracy for that feature. In this regard, our re-
sults should be further tested using other approaches; for
instance probabilistic methods (e.g. Pauwels, Kaiser, &
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Peeters, 2013; Pearce & Wiggins, 2006) would be suitable
as they offer alternative assumptions regarding location of
actual boundaries.
Finally, as an outcome of this study it can be stated that lis-

teners may tend to focus on musical dimensions that do not
change often. This interpretation is plausible and highlights
the importance of e.g. tonal and tempo stability, as well
as the role of repetition and motivic similarity in musical
pieces. Future work should test this possibility by conduct-
ing listening studies in which listeners would describe what
is the most salient dimension for different time points in the
music; further, as suggested by Müller et al. (2016), auto-
matic detection of these acoustic description cues should
also be a relevant task regarding structural segmentation.
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