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ABSTRACT

This work proposes a lexicalized probabilistic context free
grammar designed for meter detection, an integral com-
ponent of automatic music transcription. The grammar
uses rhythmic cues to align a given musical piece with
learned metrical stress patterns. Lexicalization breaks the
standard PCFG assumption of independence of produc-
tion, and thus, our grammar can model the more complex
rhythmic dependencies which are present in musical com-
positions. Using a metric we propose for the task, we show
that our grammar outperforms baseline methods when run
on symbolic music input which has been hand-aligned to a
tatum. We also show that the grammar outperforms an ex-
isting method when run with automatically-aligned sym-
bolic music data as input. The code for our grammar is
available at https://github.com/apmcleod/met-detection.

1. INTRODUCTION

Meter detection is the organisation of the beats of a given
musical performance into a sequence of trees at the bar
level, in which each node represents a single note value. In
common-practice Western music (the subject of our work),
the children of each node in the tree divide its duration into
some number of equal-length notes (usually two or three)
such that every node at a given depth has an equal value.
For example, the metrical structure of a single 3

4 bar, down
to the quaver level, is shown in Fig. 1. Additionally, the
metrical structure must be properly aligned in phase with
the underlying musical performance so that the root of each
tree corresponds to a single bar. Each level of a metrical
tree corresponds with an isochronous pulse in the under-
lying music: bar, beat, and sub-beat (from top to bottom).
There are theoretically further divisions further down the
tree, but as these three levels are enough to unambiguously
identify the meter of a piece, we do not consider any lower.

The task is an integral component of Automatic Music
Transcription (AMT), particularly when trying to identify
the time signature of a given performance, since there is a
one-to-one relationship between time signatures and met-
rical structures. In music, each successive bar may have
a different metrical structure than the preceding one; how-
ever, such changes in structure are not currently handled
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Figure 1. The metrical structure of a 3
4 bar.

by our model, and are left for future work. Our grammar
can only be applied to pieces in which each bar is of equal
length, has the same number of equal-length beats, and
each beat has the same number of equal-length sub-beats.
That is, it can be applied to any piece where the metrical
tree structure under each node at a given level of the tree is
identical. In this work, we evaluate our grammar only on
the simple and compound meter types 2

X, 3
X, 4

X, 6
X, 9

X, and
12
X (whereX can be any of 1, 2, 4, 8, or 16), and leave more
uncommon and irregular meters for future work. Those in-
terested in asymmetric meter detection should refer to [1].

Our grammar is designed to be run on symbolic music
data such as MIDI. In this work, we present two experi-
ments: one where the tatum—the fastest subdivision of the
beat (we use demisemiquavers, or 32nd notes)—is given,
and another where a beat-tracker is used as a preprocess-
ing step to automatically detect some tatum (not necessar-
ily demisemiquavers). Note that ideally, the beat-tracker
would be run jointly with our grammar, as beat and me-
ter are intrinsically related; however, we leave such a joint
model for future work.

Thus, the task that our grammar solves is one of identi-
fying the correct full metrical structure, composed of: (1)
meter type (the number of beats per bar and the number of
sub-beats per beat), (2) phase (the number of tatums which
fall before the first full bar), and (3) sub-beat length (the
number of tatums which lie within a single sub-beat).

2. EXISTING WORK

Most of the early work in the field of meter detection in-
volved rule-based, perceptual models. Longuet-Higgins
and Steedman [2] present one which runs on monophonic
quantized data and uses only note durations, which was
later extended by Steedman [3] to incorporate melodic rep-
etition. Both models were evaluated on full metrical struc-
ture detection on the fugues from Bach’s Well-Tempered
Clavier (WTC). Longuet-Higgins and Lee [4] describe a
somewhat similar model, also to be run on monophonic
quantized data, though only a few qualitative examples are
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presented in evaluation, and the model is unable to handle
syncopation. Spiro [5] proposes a rule-based, incremental
model for quantized data, combined with a probabilistic
n-gram model of bar-length rhythmic patterns, and evalu-
ated on full metrical structure detection on a small corpus
of 16 monophonic string compositions by Bach. This re-
mains one of the only successful models for meter detec-
tion to use a grammar thus far, though similar grammars
have been used for rhythmic and tempo analysis where the
meter is given [6–8]. While these rule-based methods show
promise, and we base some of our model’s principals on
them, a more flexible probabilistic model is preferred.

Brown [9] proposed using auto-correlation for meter de-
tection, in which a promising, though limited, evaluation
on meter type and sub-beat length detection was shown for
17 quantized pieces, Meudic [10] later proposed a simi-
lar model also using auto-correlation on quantized MIDI
data for the same task. Eck and Casagrande [11] extended
this further, and were the first to use auto-correlation to
also calculate the phase of the meter (though phase detec-
tion results are limited to synthetic rhythms). They were
also the first to do some sort of corpus-based evaluation,
though only to classify the meter of a piece as duple or
compound. Though auto-correlation has performed well
for partial metrical structure detection, there is still a ques-
tion about whether it can detect the phase of that meter, and
no work that we have found has yet done so successfully
from real symbolic music data.

Inner Metric Analysis (IMA) was first proposed for music
analysis by Volk [12], though only as a method to analyse
the rhythmic stress of a piece, not to detect the meter of
that piece. It requires quantized MIDI with labeled beats
as input, and it involves identifying periodic beats which
align with note onsets. Thus, detecting metrical structure
and phase using IMA is a matter of classifying the correct
beats as downbeats; it is used by De Haas and Volk [13],
along with some post-processing, to perform meter detec-
tion on quantized MIDI data probabilistically. We were
unable to run their model on our data, though they evalu-
ate the model on two datasets, testing both duple or triple
classification as well as full metrical structure detection
(including phase). However, as the datasets they used are
quite homogeneous—95% of the songs in the FMPop cor-
pus are in 4

4, and 92% of the songs in the RAG corpus [14]
are in either 2

4 or 4
4 time—we have decided not to include a

comparison in this work.

Whiteley et al. [15] perform full metrical structure detec-
tion probabilistically from live performance data by jointly
modeling tempo, meter, and rhythm; however, the evalu-
ation was very brief, only testing the model on 3 bars of
a single Beatles piano performance, and the idea was not
used further on symbolic data to our knowledge. Temper-
ley [16] proposes a Bayesian model for the meter detec-
tion of unquantized, monophonic MIDI performance data.
The general idea is to model the probability of a note on-
set occurring given the current level of the metrical tree
at any time with Bayes’ rule. This is combined with a
simple Bayesian model of tempo changes, giving a model
which can detect the full metrical structure of a perfor-

S →Mb,s

Mb,s → Bs . . . Bs (b times)
Bs → SB . . . SB (s times) | r
SB → r

Figure 2. The grammar rules which form the basis of the
PCFG. The subscript b is the number of beats per bar, while
s is the number of sub-beats per beat. The terminal symbol
r can refer to any rhythmic pattern.

mance. Temperley [17] extends this model to work on
polyphonic data, combining it into a joint model with a
Bayesian voice separator and a Bayesian model of har-
mony. This joint model performs well on full metrical
structure detection on a corpus of piano excerpts, and we
compare against it in this work.

3. PROPOSED METHOD

For our proposed method, we were careful to make as few
assumptions as possible so it can be applied to different
styles of music directly (assuming enough training data
is available). It is based on a standard probabilistic con-
text free grammar (PCFG; presented in Section 3.1) with
added lexicalization as as introduced in Section 3.2. The
inference procedure is described in Section 3.3.

The basic idea of the grammar is to detect patterns of
rhythmic stress in a given piece of music with the gram-
mar, and then to measure how well those stress patterns
align with metrical stress patterns. We use note length to
measure rhythmic stress in this work, assuming that long
notes will be heard as stressed. This assumption is based
on ideas from many of the rule-based methods presented
above, and works well; however, there are many other fac-
tors of musical stress that our grammar does not capture,
such as melody and harmony, which have been found to be
helpful for meter detection [18], and will be incorporated
into our grammar in future work.

3.1 PCFG

The context-free grammar shown in Fig. 2 is used to con-
struct a rhythmic tree quite similar to the metrical tree from
Figure 1 above. Each bar of a given piece is first assigned
the start symbol S, which can be rewritten as the non-
terminal Mb,s (representing the meter type), where b is the
number of beats per bar and s is the number of sub-beats
per beat (2 for simple meters and 3 for compound meters).
For example, M4,2 represents a meter in 4

4 time, and M2,3

represents a meter in 6
8 time.

A non-terminal Mb,s is rewritten as b beat non-terminals
Bs. Each beat non-terminal Bs can be rewritten either as s
sub-beat non-terminals SB or as the terminal r, represent-
ing the underlying rhythm of the beat. A beat may only be
rewritten as r if it contains either (1) no notes or (2) a sin-
gle note which lasts at least the entire duration of the node
(the note may begin before the beat, end after the beat, or
both). A sub-beat SB must be rewritten as a terminal r,
representing the underlying rhythm of that sub-beat.
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Figure 3. An example of the rhythmic tree of a 6
8 bar with

the rhythm ˇ “‰ ˇ “ ˇ “
== ˇ “==.

An example of the rhythmic tree of a single 6
8 bar with

the rhythm ˇ “‰ ˇ “ ˇ “== ˇ “== is shown in Figure 3. Here, the first
beat is been rewritten as a terminal since it is the only note
present.

3.2 Lexicalization

One downside of using a PCFG to model the rhythmic
structure is that PCFGs make a strong independence as-
sumption that is not appropriate for music. Specifically,
in a given rhythm, a note can only be heard as stressed
or important in contrast with the notes around it, though
a standard PCFG cannot model this. A PCFG may see a
dotted quarter note and assume that it is a long note, even
though it has no way of knowing whether the surround-
ing notes are shorter or longer, and thus, whether the note
should indeed be considered stressed.

To solve this problem, we implement a lexicalized PCFG
(LPCFG), where each terminal is assigned a head corre-
sponding to its note with the longest duration. Strong heads
(in this work, those representing longer notes) propagate
upwards through the metrical tree to the non-terminals in a
process called lexicalization. This allows the grammar to
model rhythmic dependencies rather than assuming inde-
pendence as in a standard PCFG, and the pattern of strong
and weak beats and sub-beats is used to determine the un-
derlying rhythmic stress pattern of a given piece of music.

This head is written (d; s), where d is the duration of the
longest note (or, the portion of that note which lies beneath
the node), and s is the starting position of that note. The
character ‘t’ is added to the end of s if that note is tied into
(i.e. if the onset of the note lies under some previous node).
In the heads, d and s are normalized so that the duration of
the node itself is 1. Thus, only heads which are assigned to
nodes at the same depth can be compared directly. A node
with no notes is assigned the empty head of (0; 0).

Once node heads have been assigned, each beat and sub-
beat non-terminal is assigned a strength of either strong
(S), weak (W ), or even (E). These are assigned by com-
paring the heads of siblings in the rhythmic tree. If all
siblings’ heads are equal, they are assigned even strength.
Otherwise, those siblings with the strongest head are as-
signed strong strength while all others are assigned weak
strength, regardless of their relative head strengths.

Head strength is determined by a ranking system, where

S( 12 ; 0)

M2,3(
1
2 ; 0)

B3,S(1; 0)

ˇ “‰

B3,W ( 13 ; 0)

SBE(1; 0)

ˇ “(

SBE(1; 0)

ˇ “(

SBE(1; 0)

ˇ “(

Figure 4. An example of the rhythmic tree of a 6
8 bar with

the rhythm ˇ “‰ ˇ “ ˇ “
== ˇ “== including strengths and lexicalization.

heads are first ranked by d such that longer notes are con-
sidered stronger. Any ties are broken by s such that an ear-
lier starting position corresponds to greater strength. Any
further ties are broken such that notes which are not tied
into are considered stronger than those which are.

An example of the rhythmic tree of a single 6
8 bar with the

rhythm ˇ “‰ ˇ “ ˇ “== ˇ “== including strengths and lexicalization is
shown in Figure 4.

3.3 Performing Inference

Each of the LPCFG rule probabilities are computed as sug-
gested by Jurafsky and Martin [19], plus additionally con-
ditioning each on the meter type. For example, the replace-
ment {M2,3(

1
2 ; 0) → B3,S(1; 0) B3,W ( 13 ; 0)} is modeled

by the product of Equations (1), (2), and (3). Equation (1)
models the probability of a transition given the left-hand-
side node’s head, while Equations (2) and (3) model the
probability of each child’s head given its type and the par-
ent’s head.

p(M2,3 → B3,S B3,W |M2,3, (1/2; 0)) (1)

p((1; 0) |M2,3, B3,S , (1/2; 0)) (2)

p((1/3; 0) |M2,3, B3,W , (1/2; 0)) (3)

The meter type conditioning ensures that the model not
prefer one meter type over another based on uneven train-
ing data. Specifically, each initial transition S → Mb,s

is assigned a probability of 1. The actual probability val-
ues are computed given a training corpus using maximum
likelihood estimation with Good-Turing smoothing as de-
scribed by Good [20]. If a given replacement’s head, as
modeled by Equations (2) and (3), is not seen in the train-
ing data, we use a backing-off technique as follows. We
multiply the probability from the Good-Turing smoothing
by a new probability equation, where the meter type is re-
moved (again with Good-Turing smoothing). This allows
the grammar to model, for example, the beat-level transi-
tions of a 9

8 bar using the beat-level transitions of a 3
4 bar.

Note that this does not allow any cross-level calculations
where, for example, the beat level of a 9

8 bar could be mod-
eled by the sub-beat level of a 6

8 bar, though this could be a
possible avenue for future work.
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The grammar was designed to be used on monophonic
melodies, so we use the voices as annotated in the data.
Afterwards, only rhythmic information is needed. That is,
the grammar uses onset and offset times for each note, and
no pitch or velocity information.

The first step in the inference process is to create mul-
tiple hypothesis states, each with probability 1, and each
corresponding to a different (meter type, sub-beat length,
phase) triplet, which are treated as latent variables. Meter
type corresponds to the specific Mb,s which will be used
throughout the piece for that hypothesis (there is currently
a constraint that pieces do not change time signature dur-
ing a piece). Sub-beat length corresponds to the length of
a sub-beat of that hypothesis state. This differentiates 2

4

time from 2
2 time, for example. Phase refers to how long of

an anacrusis a hypothesis will model. That is, how many
tatums lie before the first full bar.

Each state’s rhythmic trees are built deterministically, one
per voice per bar while that voice is active, throwing out
any anacrusis bars. A state’s final probability is the product
of the probabilities of each of the trees of each of its voices.
After running through a full piece, the states are ordered
by probability and the metrical structure corresponding to
the most likely state’s (meter type, sub-beat length, phase)
triplet is picked as the model’s guess.

One final optimization is made, related to the “rule of
congruence” as noted by Longuet-Higgins and Steedman
[2], and further described perceptually by Lee [21]. That
is, with few exceptions, a composer (at least of classi-
cal music), will not syncopate the rhythm before a meter
has been established. This means that if the meter has
not yet been established, and the underlying rhythm does
not match with the metrical structure of a hypothesis state
based on its (meter type, sub-beat length, phase) triplet,
we should be able to remove it. In practice, we allow up
to 5 mismatches before eliminating a metrical hypothesis
state. In tests, setting this value to anything from 2 to 20
makes no difference, just the lower the value the faster the
program becomes (and the less room for error there is in
the case of a particularly adventurous composer). For full
details on the implementation of this rule, see Appendix A.

4. EVALUATION

4.1 Metric

To evaluate our method, instead of just checking whether
the top hypothesis’ metrical structure is fully correct or not,
we wanted some measure of partial correctness. For in-
stance, if the correct time signature is 4

4, a guess of 2
4 should

achieve a higher score than a guess of 6
8. With that in mind,

we propose the following metric.
For each of the three levels of the guessed metrical struc-

ture, an exact match with a level of the correct metrical
structure is counted as a true positive, while a clash—when
all of the nodes in a level of the guessed structure cannot be
made by some integer multiple or division of nodes from
each of the levels of the correct structure—is counted as a
false positive. After all three levels have been tested, each
of the correct metrical structure’s levels which were not
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Figure 5. Top: The metrical structure of a 4
4 bar. If 4

4 is
the correct time signature, a guess of 2

4 with the correct
phase (bottom-left) would give P = 1.0, R = 0.67, and
F1 = 0.8. A guess of 6

8 with the correct phase (bottom-
right) would give P = 0.33, R = 0.33, and F1 = 0.33.

matched count as a false negative. Precision, recall, and
F1 can all be computed based on the resulting true posi-
tive, false positive, and false negative totals.

Examples of this metric are illustrated in Fig. 5. Given
a correct time signature of 4

4, and assuming that the phase
of the guessed metrical structure is correct, if the guessed
time signature is 2

4, there are only 2 true positives; however,
the bar-level grouping for 2

4 does not clash with the metrical
structure of 4

4, so it is not counted as a false positive. There
is, however, 1 false negative from the bar level of the 4

4,
giving values of P = 1.0, R = 0.67, and F1 = 0.8. If 6

8 is
guessed instead, the sub-beat level again matches, giving 1
true positive. However, both the beat level and the bar level
clash (since 1.5 beats of a 4

4 bar make a single 6
8 beat, and 3

4
of a 4

4 bar gives a 6
8 bar), giving 2 false positives and 2 false

negatives. This gives values of P = 0.33, R = 0.33, and
F1 = 0.33. Much lower, and rightfully so.

For evaluation on a full corpus, true positives, false posi-
tives, and false negatives are summed throughout the entire
corpus to get a global precision, recall, and F1.

4.2 Data

We report our results on two main corpora: (1) the 15 Bach
Inventions, consisting of 1126 monophonic bars (in which
a single bar with two voices counts as two bars), and (2)
the much larger set of 48 fugues from the Well-Tempered
Clavier, containing 8835 monophonic bars. These two cor-
pora contain quantized MIDI files, hand-aligned with a
demisemiquaver (32nd note) tatum, and we present results
using both this hand-aligned tatum and an automatically-
aligned tatum. The notes in each file are split into voices
as marked in the corresponding scores. We present addi-
tional evaluation in the automatically-aligned case using
the German subset of the Essen Folksong Collection [22],
4954 pieces in total, consisting of 66356 monophonic bars.

We use leave-one-out cross-validation within each corpus
for learning the probabilities of the grammar. That is, for
testing each song in a corpus, we train our grammar on all
of the other songs within that corpus. We also tried using
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Method Inventions Fugues
4
4 0.58 0.45

PCFG 0.61 0.63
LPCFG 0.63 0.80

Table 1. The F1 of each method for each corpus using a
hand-aligned tatum.

Method Inventions Fugues Essen [22]
Temperley [17] 0.58 0.63 0.60

LPCFG+BT 0.55 0.72 0.74

Table 2. The F1 of each method for each corpus using an
automatically-aligned tatum.

cross-validation across corpora by training on the Inven-
tions when testing the Fugues and vice versa; however, that
led to similar but slightly worse results, as the complexities
of the rhythms in the corpora are not quite similar enough
to allow for such training to be successful. Specifically,
there is much more syncopation in the Fugues than in the
Inventions, and thus our grammar would tend to prefer to
incorrectly choose meters for the Inventions which would
result in some syncopation.

4.3 Results

With hand-aligned input, the LPCFG is evaluated against
two baselines. First, a naive one, guessing 4

4 time with
an anacrusis such that the first full bar begins at the on-
set of the first note (the most common time signature in
each corpus). Second, the PCFG without lexicalization (as
proposed in Section 3.1, with Good-Turing smoothing and
rule of congruence matching).

With automatically-aligned input, we evaluate against the
model proposed by Temperley [17], which performs beat
tracking jointly with meter detection. For direct compar-
ison, we use the fastest beat given by Temperley’s model
as the tatum, and we call this version of our grammar an
LPCFG with beat tracking (LPCFG+BT). It would be bet-
ter to perform beat tracking and meter detection jointly, as
in Temperley’s model; however, we leave such joint infer-
ence for future work. The automatic alignment presents
some difficulty in computing our metric, since a metri-
cal hypothesis generated from an incorrectly aligned input
may move in and out of phase throughout the course of a
piece due to beat tracking errors. Therefore, we evaluate
each meter based on its phase and sub-beat length relative
only to the first note of each piece, thus avoiding any mis-
alignments caused by subsequent errors in beat tracking.

The results for hand-aligned input can be found in Ta-
ble 1, where it can be seen that the LPCFG outperforms
all baselines, quite substantially on the fugues. The re-
sults for automatically-aligned input are shown in Table 2.
Here, the LPCFG+BT outperforms Temperley’s model on
the fugues and the Essen corpus, but is outperformed by it
on the inventions.

For both hand-aligned and automatically-aligned input, it
is surprising that the LPCFG (and LPCFG+BT) does not
perform better on the inventions, which are simpler com-

Meter Inventions Fugues
Type # LPCFG +BT # LPCFG +BT

6
X 0 — — 4 0.58 0.83
3
X 5 0.60 0.64 7 0.57 0.88
2
X 0 — — 9 0.89 0.76
4
X 8 0.71 0.55 26 0.90 0.66

All 15 0.63 0.55 48 0.80 0.72

Table 3. The F1 of the LPCFG and LPCFG+BT split by
meter type. Here, # represents the number of pieces in
each meter type, and meter types which occur only once in
a corpus are omitted.

positions than the fugues. The reason for this lack of im-
provement seems to be a simple lack of training data, as
can be seen in Table 3, which shows that as the number of
training pieces for each meter type increases, the perfor-
mance of the LPCFG improves dramatically, though the
LPCFG+BT does not follow this trend.

During automatic tatum alignment, beat-tracking tends to
quantize rare patterns (which may occur only a single me-
ter type) into more common ones, allowing the grammar
to identify the rhythmic stress of a piece without having
to parse too many previously unseen rhythms. This helps
in the case of not enough training data, but can hurt when
more training data is available. These rare patterns tend to
be strong markers of a certain meter type, and if enough
training data is available to recognize them, such quanti-
zation would remove a very salient rhythmic clue. There-
fore, for both hand-aligned and automatically-aligned in-
put, more training data in the style of the inventions should
continue to improve its performance on that corpus.

Fig. 6 shows the percentage of pieces in each corpus for
which each method achieves 3, 2, 1, or 0 true positives,
and further details exactly what is happening on the inven-
tions. The true positive counts correspond with those in
our metric, and represent the number of levels of the met-
rical tree (bar, sub-beat, beat) which were matched in both
length and phase for each piece. Thus, more true positives
corresponds with a more accurate guess.

The improvement on the fugues is clear for both types of
input. On the hand-aligned inventions, however, the naive
4
4 model gets 40% of the metrical structures of the inven-
tions exactly correct (3 TPs), while the LPCFG gets only
26.67%. The LPCFG gets significantly more of its guesses
mostly or exactly correct (with 2 or 3 TPs), and elimi-
nates totally incorrect guesses (0 TPs) completely. This
shows that, even though it may not have had enough data
yet to classify time signatures correctly, it does seem to be
learning some sort of structural patterns from what limited
data it has. Meanwhile, on the automatically-aligned in-
ventions, the LPCFG+BT gets slightly fewer of its guesses
mostly correct than Temperley’s model, but significantly
fewer (only one invention) totally incorrect, again showing
that it has learned some structural patterns. The slightly
lower F1 of the LPCFG+BT on the automatically-aligned
inventions is due to a higher false positive rate than Tem-
perley’s model.

That our model’s performance is more sensitive to a lack
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Figure 6. The percentage of pieces in each corpus for
which each method’s metrical structure guess resulted in
the given number of true positives, for (a) hand-aligned
and (b) automatically-aligned beats.

Figure 7. The first bar of 15th fugue from WTC book I by
Bach (BWV 860).

of training data is further illustrated by the fact that our
model outperforms Temperley’s substantially on the Essen
corpus, where ample training data is available. Indeed, in
general, the LPCFG+BT performs worse than Temperley’s
model when there is a lack of training data, but outper-
forms it when enough data exists. 1

A specific case where increased training data would ben-
efit the LPCFG is in the 15th fugue from WTC book I, the
first bar of which is shown in Fig. 7. This rhythmic pattern
is found throughout the piece, and is a strong indication of
a 6

8 bar, consisting of two even beats, each split into a sub-
beat pattern of strong, weak, weak. However, our grammar
guesses that this piece is in 4

4 time simply because it has not
seen the transition {B3,E → SBS SBW SBW } in a 6

X me-
ter type in training. This is indicative of the errors we see
throughout the data, showing again that with more training
data the results will only improve.

5. CONCLUSION

In this paper, we have proposed an LPCFG for full met-
rical structure detection of symbolic music data. We have
shown that this grammar improves over multiple baseline
methods when run on hand-aligned symbolic music input,

1 We do not include evaluation on the Essen corpus with hand-aligned
tatum because the pieces are very short and quite simple rhythmically.

and that it can be combined with a beat tracking model
to achieve good meter detection results on automatically-
aligned symbolic music data. The fact that lexicalization
adds definite value over a standard PCFG shows that there
are complex rhythmic dependencies in music which such
lexicalization is able to capture.

Our model is somewhat sensitive to a lack of training
data, though it does learn metrical stress patterns quickly,
and we will also look at more aggressive cross-level back-
off techniques to make the grammar more robust to such a
lack of data. For example, it may be possible to model the
transitions at the sub-beat level of a 9

X meter type using the
beat level transitions of a 3

X meter type. Furthermore, we
will also look to apply our model to more uncommon or
irregular meter types such as 5

X or 7
X, perhaps as the con-

catenation of the more common meter types.
The proposed LPCFG shows promise in meter detection

even using only rhythmic data, and future work will incor-
porate melodic and harmonic information into the gram-
mar. For example, harmonic changes are most likely to
occur at the beginnings of bars, and low notes occur more
frequently on strong beats, suggesting that incorporating
pitch and harmony into the lexical heads may improve per-
formance. Without such additions, our grammar is helpless
to hypothesize a meter for an isochronous melody.

Another avenue of future work is to adapt the grammar
for use on live performance data by performing inference
on the grammar jointly with a beat-tracker. This is more
natural than performing beat-tracking as a preprocessing
step, as beat and meter are closely related. We will also
consider the grammar’s application to acoustic data; we
have run preliminary experiments using off-the-shelf onset
detection models, but found that a more complex approach
is needed. Specifically, some sort of voicing information
for the onsets would improve performance dramatically,
since it would give a more accurate measurement of the
lengths of the notes corresponding to each onset.
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A. RULE OF CONGRUENCE

A metrical structure hypothesis begins as unmatched, and
is considered to be fully matched if and only if both its beat
and sub-beat levels have been matched. Thus, a metrical
hypothesis can be in one of four states: fully matched, sub-
beat matched, beat matched, or unmatched.

If a hypothesis is unmatched, a note which is shorter than
a sub-beat and does not divide a sub-beat evenly is counted
as a mismatch. A note which is exactly a sub-beat in length
is either counted as a mismatch (if it is not in phase with
the sub-beat), or the hypothesis is moved into the sub-beat
matched state. A note which is between a sub-beat and a
beat in length is counted as a mismatch. A note which is
exactly a beat in length is either counted as a mismatch (if
it is not in phase with the beat), or the hypothesis is moved
into the beat matched state. A note which is longer than a
beat, is not some whole multiple of a beat in length, and
does not divide a bar evenly is counted as a mismatch.

If a hypothesis is sub-beat matched, it now interprets each
incoming note based on that sub-beat length. That is, any
note which is longer than a single sub-beat is divided into
up to three separate notes (for meter matching purposes
only): (1) The part of the note which lies before the first
sub-beat boundary which it overlaps (if the note begins ex-
actly on a sub-beat, no division occurs); (2) The part of the
note which lies after the final sub-beat boundary which it
overlaps (if the note ends exactly on a sub-beat, no division
occurs); and (3) the rest of the note. After this processing,
a note which is longer than a sub-beat and shorter than a
beat is counted as a mismatch. (Due to note division, this
only occurs if the note is two sub-beats in length and each
beat has three sub-beats.) A note which is exactly a beat in
length moves the hypothesis into the fully matched state.
A note which is longer than a beat and is not some whole
multiple of beats is counted as a mismatch.

If a hypothesis is beat matched, it now interprets each
incoming note based on that beat length exactly as is de-
scribed for sub-beat length in the previous paragraph. Af-
ter this processing, a note which is shorter than a sub-beat
and does not divide a sub-beat evenly is counted as a mis-
match. A note which is exactly a sub-beat in length is
either counted as a mismatch (if it is not in phase with
the sub-beat), or the hypothesis is moved into the fully
matched state. A note which is longer than a sub-beat and
shorter than a beat, and which does not align with the be-
ginning or end of a beat, is counted as a mismatch.

Once a metrical hypothesis is fully matched, incoming
notes are no longer checked for matching, and the hypoth-
esis will never be removed.
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