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ABSTRACT

A theoretical basis of existing attempts to automatic finger-
ing decision is path optimization that minimizes the diffi-
culty of whole phrase that is typically defined as the sum
of the difficulties of each moves required for playing the
phrase. However, from a practical point of view, it is more
important to minimize the maximum difficulty of the move
required for playing the phrase, that is, to make the most
difficult move easiest. For this reason, our previous work
introduced a variant of the Viterbi algorithm termed the
“minimax Viterbi algorithm” that finds the path of the hid-
den states that maximizes the minimum transition proba-
bility along the path. In the present work, we introduce a
parameterized family of Viterbi algorithm termed the “Lp-
Viterbi algorithm” that continuously interpolates the con-
ventional Viterbi algorithm and the minimax Viterbi algo-
rithm. (It coincides with the conventional for p = 1 and
the minimax for p = ∞.) We apply those variants of the
Viterbi algorithm to HMM-based guitar fingering decision
and compare the resulting fingerings.

1. INTRODUCTION

The pitch ranges of strings of string instruments usually
have significant overlaps. Therefore, such string instru-
ments have several ways to play even a single note (except
the highest and the lowest notes that are covered only by a
single string) and thus numerous ways to play a phrase and
an astronomical number of possible ways to play a whole
song. This is why fingering decision for a given song is not
an easy task and automatic fingering decision has been at-
tracting many researchers. Existing attempts to automatic
fingering decision are mainly based on path optimization
by minimizing the difficulty level of whole phrase that is
defined as the sum or the product of the difficulty levels
of each moves. However, whether a string player can play
a given passage using a specific fingering depends almost
only on whether the most difficult move included in the fin-
gering is playable. In particular, for beginner players, it is
most important to minimize the maximum difficulty level
of move included in a fingering, that is, to “make the most
difficult move easiest.”

To this end, our previous work [1] introduced a variant of
the Viterbi algorithm [2] termed the “minimax Viterbi al-
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gorithm” for finding the sequence of the hidden states that
maximizes the minimum transition probability on the se-
quence (not the product of all the transition probabilities
on the sequence). The purpose of the paper is to intro-
duce a parameterized family of Viterbi algorithm termed
the “Lp-Viterbi algorithm” that continuously interpolates
the conventional Viterbi algorithm and the minimax Viterbi
algorithm and then apply it to HMM-based guitar fingering
decision. The framework of HMM-based fingering deci-
sion employs a hidden Markov model (HMM) whose hid-
den states are left hand forms of guitarists and output sym-
bols are musical notes. We perform fingering decision by
solving the decoding problem of HMM using our proposed
Lp-Viterbi algorithm. We set the transition probabilities
to large values for easy moves and small values for diffi-
cult ones so that resulting fingerings make the most diffi-
cult move easiest as previously discussed in this section.
To distinguish the original Viterbi algorithm from our vari-
ants, we refer to the former as “conventional Viterbi algo-
rithm” throughout the paper.

There have been several attempts to automatic fingering
decision and automatic arrangement for guitars. Sayegh
[3] introduced the path optimization approach to finger-
ing decision of generic string instruments. Miura et al.
[4] developed a system that generates guitar fingerings for
given melodies (monophonic phrases). Radicioni et al. [5]
introduced cognitive aspects of fingering decision to the
path optimization approach. Radisavljevic and Driessen
[6] proposed a method for designing cost functions for dy-
namic programming (DP) for fingering decision. Tuohy
and Potter [7] introduced a genetic algorithm (GA) for fin-
gering decision. Baccherini et al. [8] introduced finite state
automaton to fingering decision of generic string instru-
ments. Hori et al. [9] applied input-output HMM intro-
duced by Bengio and Frasconi [10] to guitar fingering de-
cision and arrangement. McVicar et al. [11] developed a
system that generates guitar tablatures for rhythm guitar
and lead guitar automatically. Comparing to those previ-
ous works, the novelty of the present work lies in that it
introduces a new category of path optimization and vari-
ants of the Viterbi algorithm correspondingly.

The rest of the paper is organized as follows. Section
2 recalls the conventional Viterbi algorithm and the min-
imax Viterbi algorithm and connects them by introducing
the Lp-Viterbi algorithm. Section 3 recalls the framework
of fingering decision based on HMM for monophonic gui-
tar phrases to which we apply the Lp-Viterbi algorithm and
evaluates the resulting fingerings in Section 4. Section 5
concludes the paper.
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2. LP -VITERBI ALGORITHM

First of all, we recall the definition of HMM and the proce-
dure of the conventional Viterbi algorithm for finding the
sequence of hidden states with the maximum likelihood.
Next, we look at the minimax Viterbi algorithm introduced
in our previous work [1] for finding the sequence of hidden
states with the maximum minimum transition probability.
After that, we introduce the Lp-Viterbi algorithm that con-
tinuously interpolates the conventional Viterbi algorithm
and the minimax Viterbi algorithm.

2.1 Hidden Markov model (HMM)

Suppose that we have two finite sets of hidden statesQ and
output symbols S,

Q = {q1, q2, . . . , qN},
S = {s1, s2, . . . , sM},

and two sequences of random variables X of hidden states
and Y of output symbols,

X = (X1, X2, . . . , XT ), Xt ∈ Q,
Y = (Y1, Y2, . . . , YT ), Yt ∈ S,

then a hidden Markov model M is defined by a triplet

M = (A,B, π)

whereA is anN×N matrix of the transition probabilities,

A = (aij), aij ≡ a(qi, qj) ≡ P (Xt = qj |Xt−1 = qi),

B an N ×K matrix of the output probabilities,

B = (bik), bik ≡ b(qi, sk) ≡ P (Yt = sk|Xt = qi),

and Π an N -dimensional vector of the initial distribution
of hidden states,

Π = (πi), πi ≡ π(qi) ≡ P (X1 = qi).

2.2 Conventional Viterbi algorithm

When we observe a sequence of output symbols

y = (y1, y2, . . . , yT )

from a hidden Markov model M , we are interested in the
sequence of hidden states

x = (x1, x2, . . . , xT )

that generated the observed sequence of output symbols y
with the maximum likelihood,

x̂ML = arg max
x

P (y,x|M)

= arg max
x

P (x|M)P (y|x,M)

= arg max
x

(logP (x|M) + logP (y|x,M))

= arg max
x

T∑
t=1

(log a(xt−1, xt) + log b(xt, yt))

(1)

where we write π(x1) = a(x0, x1) for convenience. The
problem of finding the maximum likelihood sequence x̂ML

is called the decoding problem and solved efficiently using
two N × T tables ∆ = (δit) of maximum log likelihood
and Ψ = (ψit) of back pointers and the following four
steps.

Initialization initializes the first columns of the two tables
∆ and Ψ using the following formulae for i = 1, 2, . . . , N ,

δi1 = log πi + log b(qi, y1),

ψi1 = 0.

Recursion fills out the rest columns of ∆ and Ψ using the
following recursive formulae for j = 1, 2, . . . , N and t =
1, 2, . . . , T−1,

δj,t+1 = max
i

(δit + log aij) + log b(qj , yt+1),

ψj,t+1 = arg max
i

(δit + log aij).

Termination finds the last hidden state of the maximum
likelihood sequence x̂ML using the last column of ∆,

xT = arg max
i

δiT .

Backtracking tracks the maximum likelihood sequence
x̂ML from the last to the first using the back pointers of
Ψ for t = T, T−1, . . . , 2,

xt−1 = ψxt,t.

2.3 Minimax Viterbi algorithm

To implement a variant of the conventional Viterbi algo-
rithm for finding the sequence of hidden states x̂MM with
the maximum minimum transition probability,

x̂MM = arg max
x

min
t

(log a(xt−1, xt) + log b(xt, yt))

(2)
where the minimum value is taken from t = 1, 2, . . . , T ,
we modify the second step of the conventional Viterbi al-
gorithm as follows.

Recursion for minimax Viterbi algorithm fills out the
two tables ∆ and Ψ using the following recursive formulae
for j = 1, 2, . . . , N and t = 1, 2, . . . , T−1,

δj,t+1 = max
i

(min(δit, log aij+log b(qj , yt+1))),

ψj,t+1 = arg max
i

(min(δit, log aij+log b(qj , yt+1))).

We modify only the second step and leave other steps un-
changed. We call the modified algorithm the “minimax
Viterbi algorithm.” The modified algorithm finds the se-
quence of hidden states with the maximum minimum prob-
ability, that is, the minimum maximum difficulty. Although
the word “maximin” is appropriate in view of probability,
we choose the word “minimax” for naming the variant be-
cause it is intuitive to understand in view of difficulty and
the word conveys our concept of “making the most difficult
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move easiest.” The modified second step works in the same
manner as the original one but now the element δit keeps
the value of the maximum minimum transition probability
of the subsequence of hidden states for the first t observa-
tions. The term min(δit, log aij+log b(qj , yt+1)) updates
the value of the minimum transition probability as the term
δit + log aij + log b(qj , yt+1) does the value of the maxi-
mum log likelihood in the conventional Viterbi algorithm.

2.4 Lp-Viterbi algorithm

To implement a family of Viterbi algorithm that continu-
ously interpolates the conventional Viterbi algorithm and
the minimax Viterbi algorithm, we consider a generalized
decoding problem of HMM defined with the Lp-norm of a
certain real vector. For a real number p ≥ 1 1 , theLp-norm
of an n-dimensional real vector

v = (v1, v2, . . . , vn) ∈ Rn

is defined as

||v||p =
p√
|v1|p + |v2|p + · · ·+ |vn|p. (3)

In particular, the L1-norm and the L2-norm correspond to
the Manhattan distance and the Euclidean distance and are
widely used in the contexts of machine learning and com-
pressed sensing. The regression models with the L1 and
L2 regularizations are the LASSO regression and the ridge
regression respectively. The L∞-norm (the limit of the Lp-
norms for p→∞) is equivalent to the following definition,

||v||∞ = max{|v1|, |v2|, . . . , |vn|}.

We define two T -dimensional real vectors of the transition
probabilities a and the output probabilities b along the se-
quences of hidden states x and output symbols y,

a(x) = (π(x1), a(x1, x2), . . . , a(xT−1, xT )),

b(x,y) = (b(x1, y1), b(x2, y2), . . . , b(xT , yT )),

and consider a generalized decoding problem,

x̂Lp = arg min
x

|| loga(x) + log b(x,y)||p, (4)

where log operates element-wise on vectors. The special
cases of p=1 and p=∞ of the generalized decoding prob-
lem (4) coincide with the conventional decoding problem
(1) and the minimax decoding problem (2) respectively.
Thus the generalized decoding problem continuously inter-
polates the conventional and the minimax decoding prob-
lems. Note that arg max in (1) and (2) changes to arg min
in (4) because the logarithms of probabilities are always
negative or zero and therefore taking the absolute values of
them in the Lp-norm (3) always inverts their signs. All the
elements of the table ∆ are negative or zero in the conven-
tional and the minimax Viterbi algorithm while they are
all positive or zero in the generalized decoding problem.
We call the generalized decoding problem (4) the “Lp-
decoding problem.” To solve the Lp-decoding problem ef-
ficiently, we modify the second step of the conventional

1 For p < 1, ||v||p does not meet the axioms of norm.

Viterbi algorithm as follows. According to the change of
signs in the table ∆, we also modify the first and third step
as follows. We leave the last step unchanged.

Initialization forLp-Viterbi algorithm initializes the first
columns of the two tables ∆ and Ψ using the following
formulae for i = 1, 2, . . . , N ,

δi1 = | log πi + log b(qi, y1)|,
ψi1 = 0.

Recursion for Lp-Viterbi algorithm fills out the two ta-
bles ∆ and Ψ using the following recursive formulae for
j = 1, 2, . . . , N and t = 1, 2, . . . , T−1,

δj,t+1 = min
i

p
√
δit

p + | log aij+log b(qj , yt+1)|p,

ψj,t+1 = arg min
i

p
√
δit

p + | log aij+log b(qj , yt+1)|p.

Termination for Lp-Viterbi algorithm finds the last hid-
den state of the maximum likelihood sequence x̂ML using
the last column of ∆,

xT = arg min
i

δiT .

3. FINGERING DECISION BASED ON HMM

We evaluate our proposed Lp-Viterbi algorithm in the fol-
lowing section with the same fingering decision model for
monophonic guitar phrases used in our previous work [1].
In this section, we look at the monophonic fingering de-
cision model based on HMM whose hidden states are left
hand forms and output symbols are musical notes played
by the left hand forms. In this formulation, fingering de-
cision is cast as a decoding problem of HMM where a fin-
gering is obtained as a sequence of hidden states.

3.1 HMM for monophonic fingering decision

To play a single note with a guitar, a guitarist depresses a
string on a fret with a finger of the left hand and picks the
same string with the right hand. Therefore, a form qi for
playing a single note can be expressed in a triplet

qi = (si, fi, hi)

where si = 1, . . . , 6 is a string number (from the high-
est to the lowest), fi = 0, 1, . . . is a fret number, and
hi = 1, 2, 3, 4 is a finger number of the player’s left hand
(1,2,3 and 4 means the index, middle, ring and pinky fin-
gers). The fret number fi = 0 means an open string.
For the standard tuning (E4-B3-G3-D3-A2-E2), the MIDI
note numbers of the open strings are o1 = 64, o2 = 59,
o3 = 55, o4 = 50, o5 = 45, o6 = 40 from which the MIDI
note number of the note played by the form qi is calculated
as

n(qi) = osi + fi.
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3.2 Transition and output probabilities

The model parameters of HMM such as the transition prob-
abilities and the output probabilities are usually estimated
from training data using the Baum-Welch algorithm [12].
However, we set those parameters manually as explained
in the following instead of estimation from training data
because it is difficult to prepare enough training data for
our application of fingering decision, that is, guitar scores
annotated with fingerings.

The difficulty levels of the moves from forms to forms
are implemented in the probabilities of the transitions from
hidden states to hidden states; a small value of the transi-
tion probability means the corresponding move is difficult
and a large value means easy. For simplicity, we assume
that the four fingers of the left hand (the index, middle, ring
and pinky fingers) are always put on consecutive frets. This
lets us calculate the index finger position (the fret number
the index finger is put on) of form qi as follows,

g(qi) = fi − hi + 1.

Using the index finger position, we set the transition prob-
ability as

aij(dt) = P (Xt = qj |Xt−1 = qi, dt)

∝ 1

2dt
exp

(
−|g(qi)− g(qj)|

dt

)
× PH(hj)

where ∝ means proportional and the left hand side is nor-
malized so that the summation with respect to j equals 1.
The first term of the right hand side is taken from the proba-
bility density function of the Laplace distribution that con-
centrates on the center and its variance dt is set to the time
interval between the onsets of the (t−1)-th note and the
t-th note. The second term PH(hj) corresponds to the dif-
ficulty level of the destination form defined depending on
the finger number hj . In the simulation in the following
section, we set PH(1) = 0.4, PH(2) = 0.3, PH(3) = 0.2
and PH(4) = 0.1 which means the form using the index
finger is the easiest and the pinky finger is the most dif-
ficult. The difficulty levels of the forms are included in
the transition probabilities (not in the output probability)
in such a way that a transition probability is adjusted to a
smaller value when the destination form of the transition is
difficult.

As for the output probability, because all the hidden states
have unique output symbols in our HMM for fingering de-
cision, it is 1 if the given output symbol is the one that the
hidden state outputs and 0 if the given output symbol is
not,

bik = P (Yt = sk |Xt = qi )

=

{
1 (if sk = n(qi))
0 (if sk 6= n(qi))

.

4. EVALUATION

We evaluate our proposed Lp-Viterbi algorithm by com-
paring the results of fingering decision for monophonic
guitar phrases using the conventional Viterbi algorithm, the

minimax Viterbi algorithm, and the proposed algorithm.
Figure 1 shows the results for the opening part of “Ro-
mance Anonimo.” The numbers on the tablatures show the
fret numbers and the numbers in parenthesis below the tab-
latures show the finger numbers where 1,2,3 and 4 means
the index, middle, ring and pinky fingers. In the bottom
graph of the transition probabilities, we see that the red
line (the conventional Viterbi algorithm) keeps higher val-
ues (easy moves) at the cost of two very small values (very
difficult moves) while the blue line (the minimax Viterbi
algorithm) circumvents such very small values and makes
the most difficult move easiest. The green line (the Lp-
Viterbi algorithm for p = 3.0) falls into an intermediate
category. The top tablature uses the pinky finger two times
while the middle and the bottom ones avoids it. Figure
2 shows the results for an excerpt from the cello part of
“Eine Kleine Nachtmusik.” In the bottom graph, we see
again that the red line keeps higher values at the cost of
few very small values while the blue line circumvents such
very small values.

5. CONCLUSIONS

We have introduced a variant of the conventional Viterbi
algorithm termed the Lp-Viterbi algorithm that continu-
ously interpolates the conventional Viterbi algorithm and
the minimax Viterbi algorithm. The variant coincides with
the conventional Viterbi algorithm for p = 1 and the min-
imax Viterbi algorithm for p = ∞. We have applied the
variant to HMM-based guitar fingering decision. Our pre-
vious work [1] showed that the minimax Viterbi algorithm
minimizes the maximum difficulty of the move required
for playing a given phrase. In the simulation of the present
work, we have compared the fingerings obtained by the
conventional Viterbi algorithm, the Lp-Viterbi algorithm
and the minimax Viterbi algorithm to see that theLp-Viterbi
algorithm is capable of making fingerings that fall into an
intermediate category between the conventional Viterbi al-
gorithm and the minimax Viterbi algorithm. We hope that
those variants of the Viterbi algorithm find a wide range of
applications in a variety of research fields.
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