
Towards an Automated Multitrack Mixing Tool using Answer Set Programming

Flavio Everardo
Potsdam University

flavio.everardo@cs.uni-potsdam.de

ABSTRACT

The use of Answer Set Programming (ASP) inside musi-
cal domains has been demonstrated specially in compo-
sition, but so far it hasn’t overtaken engineering areas in
studio-music (post) production such as multitrack mixing
for stereo imaging. This article aims to demonstrate the
use of this declarative approach to achieve a well-balanced
mix. A knowledge base is compiled with rules and con-
straints extracted from the literature about what profes-
sional music producers and audio engineers suggest cre-
ating a good mix. More specially, this work can deliver ei-
ther a mixed audio file (mixdown) as well as a mixing plan
in (human-readable) text format, to serve as a starting point
for producers and audio engineers to apply this methodol-
ogy into their productions. Finally this article presents a
decibel (dB) and a panning scale to explain how the mixes
are generated.

1. INTRODUCTION

The stereo mixing process in a glance, results by placing
each independent recorded instrument between two speak-
ers or channels using a three dimensional space in a bal-
anced way; this means, working with depth (volume), width
(panorama) and height (frequency). Audio engineers and
music producers with specific knowledge and skills usually
do this task by using certain software called Digital Au-
dio Workstation (DAW) with no feedback from the com-
puter or any intelligent system. Nevertheless, there are
many rules regarding mixing. Some rules describe con-
ventions about volume settings, placing instruments in the
panorama or even equalize instruments within certain band-
width frequencies. This leads to the idea of gathering all
these rules and let a computer produce mixes automatically
or at least set a starting points that can be modified later in
a DAW.

On the other hand, besides the DAWs available to create
your mix, related work has already explored several tasks
that compel the mixing procedure in an automatic way
such as: Levels balancing, automatic panning, dynamic
range compression and equalization, among others [1–6].

From this point, there are some automatic mixing systems
that integrate the tasks previously mentioned by using one

Copyright: c© 2017 Flavio Everardo et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

of three major areas of study [7] which are:

• Machine Learning techniques, trained on initial mixes
to apply the learned features on new content.

• Grounded Theory approach, aims to acquire basic
mixing knowledge including psychoacoustic studies
and user preferences to eventually transfer this com-
pilation to an intelligent system, and

• Knowledge Engineering, feeds an intelligent system
with already known rules and constraints.

All these related work uses low-level features (audio anal-
ysis) and their mixing decisions are solely based on this in-
formation. So far none has used a declarative proposal as
an alternative to mix multiple tracks. As an alternative, this
paper shows an innovative way to create mixes using An-
swer Set Programming (ASP) [8] as part of the Knowledge
Engineering category. This proposal uses high-level in-
formation extracted from the literature including audio en-
gineering books, websites and peer-reviewed papers such
as [7,9–14] without taking in consideration (yet) low-level
information.

Previous work has shown the use of a declarative lan-
guage such as ASP to compose diverse types of musical
styles [15, 16] including lyrics that matches the compo-
sition [17]. Other works proposes to build and compose
chords progressions and cadences [18, 19], create score
variations [20] or fill the spaces to complete a composi-
tion [21]. The reason why ASP fits perfectly for this type
of problem is because of its declarative approach that al-
lows in a compact way, describing the problem rather than
the form of getting the solution. Another benefit is the pos-
sibility to add or change rules without taking care of their
order of execution. Also mixing is a high combinatorial
problem meaning that there are many ways to do a mix [9]
independently of the audio files used. Using a generate-
and-test approach may deliver valid, and even not yet pro-
posed (heard) results.

The goal of this work is to demonstrate the use of rules,
the easy modelling for mixing rules and engineering knowl-
edge representation, as well as the high-performance of
ASP to create a balanced studio mix and a human-readable
plan file. This audio mix is not intended to be closed to
a specific genre, although only a fixed set of instruments
is used. Audio input files can be given to generate the
mixdown file and render a WAV file using Csound [22].
Besides, due the lack of real-life examples settings or com-
mon practices describing professional’s approaches on how
to balance the audio files [7], this work proposes a deci-
bel (dB) and a panorama scale to place each instrument in
the sound field. To prove the basic modeling of a mixing

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-422

mailto:flavio.everardo@cs.uni-potsdam.de
http://creativecommons.org/licenses/by/3.0/

procedure, the scope of this work focuses on balance and
panning only, leaving further processors such as dynamic
range compression, equalization and filtering for future de-
velopments.

The result of this work is a static mixdown file, which
is a rendered file with at most 16 instruments mixed. The
user can adjust the number of instruments in the mix. Ac-
cording to Gibson [10], the most common instruments in
a mix are: bass drum (also known as kick), snare, hi hats,
hi and low toms, left and right overs, ride cymbal, a bass
line, lead and rhythmic guitar, lead and back vocals, piano,
violin and cello. These fix but vast number of instruments
is sufficient enough to illustrate the goal of this paper.

This document starts by giving a brief explanation of the
concepts that are involved the mixing process. The next
section describes what ASP is and how the mix is modeled
in a logic form. Finally, this paper concludes with an eval-
uation and results of the mix and the plan files as well as a
discussion on further work.

2. THE MIXING PROCESS

The mixing process involves many expert tasks that accu-
rately described, can be implemented in software or hard-
ware [23]. All this expert knowledge extracted from the
literature consists of sets of rules, constraints, conventions
and guidelines to recreate a well-balanced mixdown. As
stated before the mixing process can be divided in three
major areas: Dynamics (depth), Panning (Width) and Fre-
quencies (Height) and it is common to find in the litera-
ture [7, 9–14] that this sequence persists as the main flow
of the mix. The first step in a mix is to handle the depth of
the track.

2.1 The Dynamics inside the Mix

The dynamics represents the emotion that the mix creates
and it is made by adjusting the volumes of different tracks
respecting which instruments should be louder than others.
The first step that most experts state is the need to have a
lead instrument which will sound the loudest compared to
the remaining instruments in the mix. The reason behind
this is that every song has its own personality and is mixed
based on the lead instrument. Once the lead instrument
is selected, the next step will define the volumes of the
remaining instruments.

David Gibson states [10] that a good practice is to set
each instrument into one of six apparent volume levels, but
before setting the amount of volume of each instrument,
first let’s introduce about sound pressure level, decibels,
and amplitude ratio. When you raise a fader on a mix-
ing board, you are raising the voltage of the signal being
sent to the amp, which sends more power to the speak-
ers, which increases the Sound Pressure Level (SPL) in
the air that your ears hear. Therefore, when you turn up a
fader, of course, the sound does get louder [10]. The deci-
bel (dB) is a logarithmic measurement of sound and is the
measure for audio signal or sound levels. The relationship
between dB and the percentage of the sound states that 0
dB equals a 100% of the recorded (or incoming) sound,

in other words the incoming signal remains untouched. If
the fader is moved 6 dB up it will double the incoming
sound (+6dB = ∼200%) and the same occurs in the op-
posite way, if the fader is decreased 6 dB below 0 dB it
will represent only half power of the original sound (-6dB
= ∼50%). This comes from the relation between the Am-
plitude Ratio-Decibel function which is dB = 20log10 N,
where dB is the resultant number of decibels, and N equals
the Amplitude Ratio. This formula states that an amplitude
ratio of 1, equals 0 dB, which is the maximum volume of
an incoming signal without distortion. The Table 1 demon-
strates that 41 dB represents a full-scale domain from the
incoming sound percentage (ISP) from 1 to 100%.

Table 1. Amplitude Ratio-Decibel Conversion Table
dB ISP (∼%) Amplitude Ratio
+6 200 1.9953 (∼2)
0 100 1
-1 89 0.891
-2 79 0.794
-3 71 0.708
-6 50 0.501 (∼1/2)

-10 32 0.316
-20 10 0.1
-30 3 0.0316
-40 1 0.01

The six apparent volume levels that Gibson proposes are
conventions to set the recorded instruments into the sound
field. Table 2 shows a scale for this six volume levels used
in this work. According to Gibson, the room contains six

Table 2. Six Volume Levels- dBs Range Table
Volume Level dBs (From) dBs (To) ISPs

1 0 -1.83 100 - 81
2 -1.94 -4.29 80 - 61
3 -4.44 -7.74 60 - 41
4 -7.96 -19.17 40 - 11
5 -20.0 -24.44 10 - 6
6 -26.02 -40.0 5 - 1

levels; nevertheless the literature doesn’t count a real dB
scale to map this room. Most of the literature only display
analogies about how far or how close an instrument should
be from another. The scale in Table 2 maps the room using
the information in Table 1 as reference. The half of the
room (between levels 3 and 4) equals the half of the sound
which is -6 dB (50%) and from this point the rest of the
values are divided in a uniform way to cover the six levels.
After balancing all the instruments by placing a dB or SPL
value according to the previous information, the next step
is panning.

2.2 How Do We Turn The Pan Pot?

Moving the instruments between the speakers from left to
right does the panning or the positioning of each instru-

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-423

ment in the sound field (normally with the use of a physi-
cal or digital pan pot) with the purpose to gain more clarity
in the mix. The panning is not the result of treating each
channel individually, instead, it is the result of the interac-
tion between those channels.

The engineer’s job is to maintain the balance of the track
across the stereo field and one recommended technique is
setting the sounds apart with similar frequency ranges. An-
other strong suggestion is to avoid hard panning which is
panning an instrument fully right or left. Low-frequency
tracks must not be panned out of the center and the rea-
son is to ensure that the power of the low-frequency tracks
are equally distributed across the speakers. That’s why the
lowest frequency instruments are not panned like the bass
line and the kick.

This work uses the -3 dB, equal power, sine/cosine pan-
ning law, which consist of assigning values from -1 (hard
left panning) to +1 (hard right panning) to determine the
relative gain of the track between channels. This law is the
most common to use according to audio engineering liter-
ature [11]. The formulas to calculate the amount of energy
that each speaker will generate in both, left and right chan-
nels are:

LeftGain = cos(π(p+ 1)/4) (1)

RightGain = sin(π(p+ 1)/4) (2)

To get the value of “p” which corresponds to the panning
value of a single instrument, a scale which contains 21 pos-
sible values is proposed, 10 assigned to the left (from -1 to
-0.1), 10 to the right (from 0.1 to 1) and 1 value for cen-
tered instruments (0 for center panning).

3. ANSWER SET PROGRAMMING

ASP is a logic-programming paradigm on the use of non-
monotonic reasoning, oriented on solving complex prob-
lems originally designed for the Knowledge Representa-
tion and Reasoning domain (KRR). ASP has become very
popular in areas, which involve problems of combinatorial
search using a considerable amount of information to pro-
cess like Automated Planning, Robotics, Linguistics, Biol-
ogy and even Music [24]. ASP is based on a simple yet
expressive rule language that allows to easily model prob-
lems in a compact form. The solutions to such problem
are known as answer sets or stable models [25], nowa-
days handled by high performance and efficient Answer
Set Solvers [26].

This paper gives a small introduction to the syntax and se-
mantics of logic programming and ASP including the nor-
mal or basic rule type, cardinality rules and integrity con-
straints . For further reading and a more in-depth coverage
of the expressions shown in this section, refer to [8,24,27].
A normal rule expression r is in the form:

a0 ← a1, . . . , am,∼am+1, . . . ,∼an (3)

where ai, for 0 ≤ m ≤ n, is an atom of the form p(t1, . . . , tk)
with predicate symbol p, and t1, . . . , tk are terms such as
constants, variables, or functions. The ∼ai stands for de-
fault negation, meaning that a literal not A is assumed to

hold unless atom A is derived to be true. Letting the ex-
pression head(r) = a0, body(r)+ = {a1, . . . , am}, and
body(r)

−
= {am+1, . . . , an}, r denoted by head(r) ←

body(r)
+ ∪ {∼a | a ∈ body(r)

−}. A logic program P
consist in a set of rules of the form (3). The ground in-
stance (or grounding) of P , denoted by grd(P), is created
by substituting all variables in a with some elements in-
side the domain of P . This results in a set of all ground
rules constructible from rules r ∈ P . A satisfiable ground
rule r of the form (3) contains a set X of ground atoms
if body(r)

+ ⊆ X and body(r)
− ∩ X = ∅ refering that

a0 ∈ X . IfX satisfies every rule r ∈ grd(R),X is a model
of P and X is an answer set of P if X is a subset-minimal
model of {head(r)← body(r)

+ | r ∈ grd(P), body(r)
−∩

X = ∅}.
For cardinality rules and integrity constraints the expres-

sions are in the form

h← a1, . . . , am,∼am+1, . . . ,∼an (4)

where ai, for 1 ≤ m ≤ n, an atom of the form p(t1, . . . , tk)
with predicate symbol p, and t1, . . . , tk are terms such as
constants, variables, or functions. The head h can be either
⊥ for integrity constraints or of the form l {h1, . . . , hk}u
for cardinality constraint in which l, u are integers and
h1, . . . , hk are atoms. Similarly a ground cardinality rule is
satisfied by a set X of ground atoms if {a1, . . . , am} ⊆ X
and {am+1, . . . , an}∩X = ∅ implying h = l {h1, . . . , hk}
u and l ≤ |{h1, . . . , hk} ∩ X| ≤ u; finally a ground
integrity constraint if {a1, . . . , am} 6⊆ X or {am+1, . . . ,
an} ∩ X 6= ∅. Both ground cardinality (in a rule’s head)
and ground integrity constraints are satisfied under certain
conditions like only satisfied by a set of ground atoms X
if X does not satisfy its body 1 . In case of a ground cardi-
nality constraint if the statement before is not fulfilled, X
must contain at least l and at most u atoms of {h1, . . . , hk}.
For example, given the following program in ASP code:
1 a :- b, c.
2 b :- not d.
3 c.
4 e :- f.

Listing 1. ASP Basic Code

the unique answer set is {a, b, c}. The default-negated
value not d satisfies b, because there is no evidence of d
as a fact. Saying this, both facts c, b satisfies the first rule
to get a. Note that f cannot satisfy e because there is no
prove of f to be true.

The following section shows the ASP programs (encod-
ings) that lead to possible configurations of a mix which
may include rules with arithmetical functions i.e., {‘+’,
‘-’, ‘*’, ‘/’} and also comparison predicates {‘=’, ‘!=’,‘<’,
‘<=’,‘>=’,‘>’}. This work uses the state-of-the-art grounder
gringo [28] and solver clasp [26].

4. MIXING WITH ASP

The procedure about how to achieve a mixed audio file or
a mixdown file is divided in 6 parts being the instruments

1 For cardinality constraints, it does not hold that both
{a1, . . . , am} ⊆ X and {am+1, . . . , an} ∩X = ∅

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-424

in the mix, the lead instrument, the room definition, setting
dynamics, panning instruments and stereo mix evenness.

The instruments inside the mix can be user defined and as
stated before there are 16 possible instruments to mix. The
resultant mix can contain any number of instruments from
the mentioned list. Each desirable instrument to appear in
the mix must be reflected as a fact trackOn(I), where
I is the instrument name like “kick”, “snare”, “piano” or
“bass”. Listing 2 shows part of the instruments definition.
1 trackOn(kick).
2 trackOn(snare).
3 trackOn(hihats).
4 trackOn(bass).
5 trackOn(piano).
6 trackOn(leadVocals).
7 trackOn(leadGuitar).

Listing 2. Instruments Definition

Similarly to the previous part, the lead instrument can be
defined as a fact as leadInstrument(I) or a rule can
deduct the lead instrument (if not defined) as shown in line
1 of Listing 3. From lines 3 to 12 a set of integrity con-
straints is coded in order to forbid certain instruments to
take a lead position. In other words, from the 16 instru-
ments defined, only six are candidates to lead the mix (pi-
ano, lead guitar, lead vocals, bass, cello and violin).
1 1 { leadInstr(I) : trackOn(I) } 1.

3 :- leadInstr(kick).
4 :- leadInstr(snare).
5 :- leadInstr(hihats).
6 :- leadInstr(hitoms).
7 :- leadInstr(lowtom).
8 :- leadInstr(leftOvers).
9 :- leadInstr(rightOvers).

10 :- leadInstr(ride).
11 :- leadInstr(rhythmGuitar).
12 :- leadInstr(backVocals).

Listing 3. Lead Instrument and Integrity Constraints

The third part of the encoding consists of the room defi-
nitions as stated in Table 2. The encoding below contains
the range of dB for each volume level.
1 volLeveldB(1, -1..0).
2 volLeveldB(2, -3..-2).
3 volLeveldB(3, -6..-4).
4 volLeveldB(4, -10..-7).
5 volLeveldB(5, -15..-11).
6 volLeveldB(6, -20..-16).

Listing 4. Room Definition in ASP

The following encoding (Listing 5) describes in a generate-
and-test approach, how each instrument gets a volume level
and a dB value (lines 3-4). This section also contains an
extract set of constraints that according to experts, some
instruments must sound louder than others meaning that a
certain instrument must respect certain volume levels only.
The lines 10-12 states that there must not be other instru-
ment louder than the lead instrument, placing the lead sound
in the volume level 1. The lines 14-16 says if an instru-
ment I is not lead, it cannot be at level 1. Other type of
instruments like the hi hats can play around levels 2 and 5

(line 20), contrary to the kick drum that only can be placed
at levels 2 and 3 (line 18). The integrity constraints from
lines 24-31 also limit these instruments to a certain volume
level. The main difference is that this constraint only ap-
plies if the instrument is not lead.
1 volumeLevel(1..6).

3 1 { instrVolumeLevel(I,VL) :
4 volumeLevel(VL) } 1 :- trackOn(I).

6 1 { instrDB(I,DB) :
7 volumeLeveldB(VL,DB) } 1 :-
8 instrVolumeLevel(I,VL).

10 :- instrVolumeLevel(LI,VL),
11 trackOn(LI),
12 leadInstr(LI), VL != 1.

14 :- instrVolumeLevel(I,VL),
15 trackOn(I),
16 not leadInstr(I), VL == 1.

18 :- instrVolumeLevel(kick,VL), VL>3.
19 :- instrVolumeLevel(snare,VL), VL>3.
20 :- instrVolumeLevel(hihats,VL), VL>5.
21 :- instrVolumeLevel(hiToms,VL), VL<3.
22 :- instrVolumeLevel(backVocals,VL),VL<2.

24 :- instrVolumeLevel(bass,VL), VL>3,
25 not leadInstr(bass).
26 :- instrVolumeLevel(leadGuitar,VL),VL>3,
27 not leadInstr(leadGuitar).
28 :- instrVolumeLevel(leadVocals,VL),VL>3,
29 not leadInstr(leadVocals).
30 :- instrVolumeLevel(piano,VL),VL>4,
31 not leadInstr(piano).

Listing 5. Dynamics

1 panDirection(left;right;center).

3 maxPanValue(10).
4 panLevels(1..MPV) :- maxPanValue(MPV).

6 1 { instrPanDirection(I,PD) :
7 panDirection(PD) } 1 :-
8 trackOn(I).

10 :- instrPanDirection(kick,PD),
11 PD != center.
12 :- instrPanDirection(bass,PD),
13 PD != center.
14 :- instrPanDirection(leadVocals,PD),
15 PD != center.
16 :- instrPanDirection(snare,PD),
17 PD != center.

19 :- instrPanDirection(hihats,center).
20 :- instrPanDirection(lowTom,center).
21 :- instrPanDirection(leadGuitar,center).
22 :- instrPanDirection(rhythmGuitar,center).
23 :- instrPanDirection(piano,center).
24 :- instrPanDirection(violin,center).
25 :- instrPanDirection(rightOvers,center).

Listing 6. Pan Directions

The panorama (in a similar way to the volume level de-
cisions) starts generating and tests the possible outcomes

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-425

by picking one of three possible direction of the stereo
field, left, center or right (lines 1-8). Additionally each
instrument in the mix needs to respect the panning con-
straints. Listing 6 shows an example of these constraints,
stating that the kick, bass, lead vocals and the snare instru-
ments must respect a centered position (lines 10-17). On
the other side, there are instruments that cannot be played
in the center (lines 19-25). Listing 7 also contains another
set of integrity constraints to respect sides. Examples of
these are: The left overs cannot be on the right and vice
versa (lines 1-4). If the two guitars, lead and rhythm are
in the mix, without evidence that the piano is the mix, the
guitars must be on different sides (lines 6-10). Also if there
is no evidence that the lead guitar exists, but both rhythm
guitar and piano are facts, pan both in different sides too
(lines 12-16).
1 :- instrPanDirection(leftOvers, PD),
2 panDirection(PD), PD != left.
3 :- instrPanDirection(rightOvers, PD),
4 panDirection(PD), PD != right.

6 :- instrPanDirection(rhythmGuitar,PD),
7 instrPanDirection(leadGuitar, PD),
8 not trackOn(piano),
9 trackOn(leadGuitar),

10 trackOn(rhythmGuitar).

12 :- instrPanDirection(rhythmGuitar,PD),
13 instrPanDirection(piano,PD),
14 not trackOn(leadGuitar),
15 trackOn(rhythmGuitar),
16 trackOn(piano).

Listing 7. Side Panning Constraints

After picking sides, the next step is to figure out how far
left or right each instrument will be panned (Listing 8).
The firsts four lines states that if the instrument is not cen-
tered, choose one pan level and place it there. The litera-
ture does not force to pan an instrument to a specific posi-
tion, except from the ones in the center. This open opportu-
nities to play around and listen some instruments in differ-
ent positions on each mixing configuration. To avoid hard
panning, lines 6 to 9 are in charge to satisfy this constraint.
Similarly, lines 11 to 14 avoids that two instruments both
panned left or right, stay at the same panning level.
1 1 { instrumentPanningLevel(I,PD,PL)
2 : panLevels(PL) } 1 :-
3 instrumentPanDirection(I,PD),
4 PD != center.

6 :- instrPanningLevel(I,right,MPV),
7 maxPanValue(MPV).
8 :- instrPanningLevel(I,left ,MPV),
9 maxPanValue(MPV).

11 :- instrPanningLevel(I1,PD,PL),
12 instrPanningLevel(I2,PD,PL),
13 I1 != I2,
14 PD != center.

Listing 8. How Far Left or Right Constraints

Finally, the part six counts the total number of instru-
ments, the ones in the center, left and right (Listing 9).

The last four lines (19-22) avoid that the mix is uneven or
unbalanced between the instruments positioned in the left
and right. The mix must not be charged to one side.
1 countTracksOn(X) :-
2 X = #count{0,trackOn(I):trackOn(I)}.

4 countPanCenter(X) :-
5 X = #count{0,
6 instrPanningLevel(I,center,PL) :
7 instrPanningLevel(I,center,PL)}.

9 countPanLeft(X) :-
10 X = #count{0,
11 instrPanningLevel(I,left,PL) :
12 instrPanningLevel(I,left,PL)}.

14 countPanRight(X) :-
15 X = #count{0,
16 instrPanningLevel(I,right,PL) :
17 instrPanningLevel(I,right,PL)}.

19 :- countPanLeft(N) ,
20 countTracksOn(X), N >= X/2.
21 :- countPanRight(N),
22 countTracksOn(X), N >= X/2.

Listing 9. Making the Mix Even

Given this knowledge base it is possible to get a config-
uration of a balanced mix using volumes and pan only.
The solution output from ASP (depending on the number
of instruments) can contain facts such as: countTracks
On(8) countPanCenter(3) countPanLeft(2) count

PanRight(3) leadInstrument(leadGuitar) intru

mentDB(hihats,-2) intrumentDB(bass,-2) instr

umentPanningLevel(kick,center,0) instrumentP

anningLevel(rhytmicGuitar,left,7) instrument

PanningLevel(lowTom,right,1) instrumentPanni

ngLevel(leadGuitar,right,3).
The facts above are an extract of an answer set. This no-

tation can be parsed into human-readable text for the mix-
down plan and to Csound code to render the WAV file.

5. TESTING AND RESULTS

To test the performance towards an automated mixing tool,
five songs from different genres were mixed using only the
rules mentioned. Rendered mix files were generated start-
ing from the grounding and solving processes by gringo
and clasp respectively. Followed by two Perl file parsers,
one to convert the answer set to a human-readable plan and
the other to parse the output to Csound code. There is no
audio treatment in Csound, just indicating the volume in
dB and the resultant panning values. A Csound function
automatically determines if the incoming file is mono or
stereo in order to use that file in the mix. No low-level fea-
tures are extracted and no further processors are applied to
the mixes.

The audio stems used for testing are high quality recorded
publicly available from the Free Multitrack Download Li-
brary by Cambridge Music Technology website 2 .

The mixes lasts between 20-60 seconds and the number

2 http://cambridge-mt.com/ms-mtk.htm

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-426

http://cambridge-mt.com/ms-mtk.htm

of tracks varies depending on the genre. For each song,
four different answers were asked to the solver in order to
test that:

1. All the mixdown files generated didn’t cause clip
(distortion). Even though it is possible to tell Csound
to leave certain headroom below 0 dB (also sug-
gested by the literature).

2. All the selected instruments were heard in the mix.

3. In fact all the mixes respect a balanced distribution
of the instruments through the sound space.

4. No inconsistencies were found when running and
switching between different types of instruments. In
other words, there are no rules that contradict others.

5. Using the aforementioned rules, this work can de-
liver a vast number of different and valid mixing
configurations.

Less than 100 ASP code lines (not included comments
and white spaces) are enough to develop a rule-based ap-
proach for multitrack stereo mixing. Also letting a non-
deterministic solver to propose thousands possible answers
in short amount of time (Over 1000 different results in less
than 0.031 seconds) gives the option to ask for another
mixing plan without changing the input audio files. This
value was obtained by running Clingo 5 on a Intel based
machine with 3.07GHz CPU with 15 GB RAM.

One of the main features discovered is that taking dif-
ferent stems with some files nearly recorded at 0 dBFS,
the rendered file doesn’t clip, even as it is mentioned, this
work doesn’t read audio spectral information.

The results shows that the track stems worked better if
they were (peak) normalized or recorded nearly 0 dBFS.
Examples of input tracks with a highest peak of -5 dB,
got lost inside the mix and depending on their loudness
some stems couldnt́ be heard. Examples of barely audible
or none audible are the kick, snare, toms and particularly
the kick fights against the bass in the low-end. Masking is-
sues were generated because of the lack of EQ, but certain
clarity was achieved because of the panning rules. This
escenario can be dealt by having two options, being the
first one to use normalized tracks only or analyze data such
as peak level, crest factor, loudness and root mean square
(RMS) level from a track. Adding this new knowledge will
treat each instrument in a different way.

Changing the lead instrument between executions showed
significant differences in the mixes. Not having the lead
vocals in the (instrumental) mixes allowed the guitars and
piano play around different positions compared with the
mixes that use vocals. Also when vocals are played in the
mix different results showed clarity in instruments more
closed to fully right or left.

Also no inconsistencies were found during all the execu-
tions. This knowledge base can produce mixes up to 16 in-
struments and be a starting point to add more instruments.

The generated mixes with their mixing plans can be found
in http://soundcloud.com/flavioeverardo-research/sets.

6. DISCUSSION AND FURTHER WORK

This work introduced a Knowledge-Engineered approach
with the use of ASP for proposing mixes in an automatic
way using high-level information. This work can be the
upper layer from one of the existing work which rely on
low-level features, convinced that this integration will lead
to more real-life mixes. On the other hand this work can be
extended to a formal system and it is necessary to integrate
low-level features such as cross-adaptive methods [2, 29]
and even sub grouping mixing rules [30].

Saying this, another imminent goal is the development
of the third axis for frequencies equalization including fil-
ters like bandpass, low-pass, hi-pass or shelf to solve inter-
channel masking. Also the addition of a processing chain
that includes compressor, and time-based effects like delay
and reverb.

For further code testing, several configurations can be de-
veloped to fulfill different mixing requirements for specific
music styles. An example of this is giving the openness
to define different “room” types (different volume level
and dB scale) and panning values depending on the music
genre. So far this work uses rules for most common in-
struments and the addition of new instruments like digital
synthetizers and other electronic-music related instruments
like pads, leads and plucks (to mention some of them) are
necessary to open this tool to other music styles and mixes.

The use of ASP leaves the option to change and mod-
ify rules and constraints to describe other parts of the mix.
Also this allows keeping the knowledge separated from the
sound engine. This knowledge base can be used indepen-
dent from Csound allowing other options for the sound
treatment. Adding to this, one further development is that
different filter types, compressors and other audio effects
can be coded in Csound. Afterwards add this information
as rules so different instruments can be treated with differ-
ent audio processing.

Lastly but not least, the benchmarking and assessment
process against other automated mixing systems, profes-
sional audio engineers and subject test rating (like shown
in [11]) needs to be done in order to evaluate the efficiency
of the rules and constraints explained in this work.

7. REFERENCES

[1] E. P. Gonzalez and J. Reiss, “Automatic mixing: live
downmixing stereo panner,” in Proceedings of the
7th International Conference on Digital Audio Effects
(DAFx’07), 2007, pp. 63–68.

[2] E. Perez-Gonzalez and J. Reiss, “Automatic equaliza-
tion of multichannel audio using cross-adaptive meth-
ods,” in Audio Engineering Society Convention 127.
Audio Engineering Society, 2009.

[3] ——, “Automatic gain and fader control for live mix-
ing,” in Applications of Signal Processing to Audio
and Acoustics, 2009. WASPAA’09. IEEE Workshop on.
IEEE, 2009, pp. 1–4.

[4] S. Mansbridge, S. Finn, and J. D. Reiss, “An au-
tonomous system for multitrack stereo pan position-

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-427

http://soundcloud.com/flavioeverardo-research/sets

ing,” in Audio Engineering Society Convention 133.
Audio Engineering Society, 2012.

[5] ——, “Implementation and evaluation of autonomous
multi-track fader control,” in Audio Engineering So-
ciety Convention 132. Audio Engineering Society,
2012.

[6] J. J. Scott and Y. E. Kim, “Instrument identification in-
formed multi-track mixing.” in ISMIR. Citeseer, 2013,
pp. 305–310.

[7] B. D. Man and J. D. Reiss, “A semantic approach to
autonomous mixing,” in APR13, 2013. Ma, et al. PAR-
TIAL LOUDNESS IN MULTITRACK MIXING.

[8] C. Baral, Knowledge representation, reasoning and
declarative problem solving. Cambridge university
press, 2003.

[9] B. Owsinski, The mixing engineer’s handbook. Nel-
son Education, 2013.

[10] D. Gibson, “The art of mixing: A visual guide to
recording,” Engineering, and Production, vol. 236,
1997.

[11] B. De Man and J. D. Reiss, “A knowledge-engineered
autonomous mixing system,” in Audio Engineering So-
ciety Convention 135. Audio Engineering Society,
2013.

[12] A. U. Case, Mix smart. Focal Press, 2011.

[13] M. Senior, Mixing secrets for the small studio. Taylor
& Francis, 2011.

[14] E. Perez_Gonzalez and J. Reiss, “A real-time semi-
autonomous audio panning system for music mixing,”
EURASIP Journal on Advances in Signal Processing,
vol. 2010, no. 1, p. 436895, 2010.

[15] G. Boenn, M. Brain, M. De Vos, and J. Ffitch, “Au-
tomatic music composition using answer set program-
ming,” Theory and practice of logic programming,
vol. 11, no. 2-3, pp. 397–427, 2011.

[16] E. Pérez, F. Omar, and F. A. Aguilera Ramírez, “Armin:
Automatic trance music composition using answer set
programming,” Fundamenta Informaticae, vol. 113,
no. 1, pp. 79–96, 2011.

[17] J. M. Toivanen et al., “Methods and models in linguis-
tic and musical computational creativity,” 2016.

[18] S. Opolka, P. Obermeier, and T. Schaub, “Automatic
genre-dependent composition using answer set pro-
gramming,” in Proceedings of the 21st International
Symposium on Electronic Art, 2015.

[19] M. Eppe16, R. Confalonieri, E. Maclean, M. Kaliakat-
sos, E. Cambouropoulos, M. Schorlemmer, M. Code-
scu, and K.-U. Kühnberger, “Computational inven-
tion of cadences and chord progressions by conceptual
chord-blending,” 2015.

[20] F. O. E. Pérez, “A logical approach for melodic varia-
tions.” in LA-NMR, 2011, pp. 141–150.

[21] R. Martín-Prieto, “Herramienta para armonización
musical mediante Answer Set Programming,” http://
www.dc.fi.udc.es/~cabalar/haspie.pdf+, University of
Corunna, Spain, Tech. Rep., 02 2016.

[22] R. Boulanger et al., “The csound book,” 2000.

[23] J. D. Reiss, “Intelligent systems for mixing multichan-
nel audio,” in Digital Signal Processing (DSP), 2011
17th International Conference on. IEEE, 2011, pp.
1–6.

[24] M. Gelfond and Y. Kahl, Knowledge representation,
reasoning, and the design of intelligent agents: The
answer-set programming approach. Cambridge Uni-
versity Press, 2014.

[25] P. Simons, I. Niemelä, and T. Soininen, “Extending and
implementing the stable model semantics,” Artificial
Intelligence, vol. 138, no. 1-2, pp. 181–234, 2002.

[26] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub,
“clasp: A conflict-driven answer set solver,” in Inter-
national Conference on Logic Programming and Non-
monotonic Reasoning. Springer, 2007, pp. 260–265.

[27] V. Lifschitz, “What is answer set programming?.” in
AAAI, vol. 8, no. 2008, 2008, pp. 1594–1597.

[28] M. Gebser, R. Kaminski, A. König, and T. Schaub,
“Advances in gringo series 3,” 2011, pp. 345–351.

[29] J. Scott, “Automated multi-track mixing and analysis
of instrument mixtures,” in Proceedings of the 22nd
ACM international conference on Multimedia. ACM,
2014, pp. 651–654.

[30] D. M. Ronan, H. Gunes, and J. D. Reiss, “Analysis
of the subgrouping practices of professional mix engi-
neers,” in Audio Engineering Society Convention 142.
Audio Engineering Society, 2017.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-428

http://www.dc.fi.udc.es/~cabalar/haspie.pdf+
http://www.dc.fi.udc.es/~cabalar/haspie.pdf+

