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ABSTRACT

This paper introduces the first system performing auto-
matic orchestration from a real-time piano input. We cast
this problem as a case of projective orchestration, where
the goal is to learn the underlying regularities existing be-
tween piano scores and their orchestrations by well-known
composers, in order to later perform this task automati-
cally on novel piano inputs. To that end, we investigate a
class of statistical inference models based on the Restricted
Boltzmann Machine (RBM). We introduce an evaluation
framework specific to the projective orchestral generation
task that provides a quantitative analysis of different mod-
els. We also show that the frame-level accuracy currently
used by most music prediction and generation system is
highly biased towards models that simply repeat their last
input. As prediction and creation are two widely differ-
ent endeavors, we discuss other potential biases in evalu-
ating temporal generative models through prediction tasks
and their impact on a creative system. Finally, we provide
an implementation of the proposed models called Live Or-
chestral Piano (LOP), which allows for anyone to play the
orchestra in real-time by simply playing on a MIDI key-
board. To evaluate the quality of the system, orchestrations
generated by the different models we investigated can be
found on a companion website ! .

1. INTRODUCTION

Orchestration is the subtle art of writing musical pieces
for the orchestra, by combining the properties of various
instruments in order to achieve a particular sonic rendering
[1,2]. As it extensively relies on spectral characteristics,
orchestration is often referred to as the art of manipulating
instrumental timbres [3]. Timbre is defined as the property
which allows listeners to distinguish two sounds produced
at the same pitch and intensity. Hence, the sonic palette of-
fered by the pitch range and intensities of each instrument
is augmented by the wide range of expressive timbres pro-
duced through the use of different playing styles. Further-
more, it has been shown that some instrumental mixtures
can not be characterized by a simple summation of their
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spectral components, but can lead to a unique emerging
timbre, with phenomenon such as the orchestral blend [4].
Given the number of different instruments in a symphonic
orchestra, their respective range of expressiveness (tim-
bre, pitch and intensity), and the phenomenon of emerging
timbre, one can foresee the extensive combinatorial com-
plexity embedded in the process of orchestral composition.
This complexity have been a major obstacle towards the
construction of a scientific basis for the study of orchestra-
tion and it remains an empirical discipline taught through
the observation of existing examples [5].

Among the different orchestral writing techniques, one
of them consists in first laying an harmonic and rhythmic
structure in a piano score and then adding the orchestral
timbre by spreading the different voices over the various
instruments [5]. We refer to this operation of extending a
piano draft to an orchestral score as projective orchestra-
tion [6]. The orchestral repertoire contains a large num-
ber of such projective orchestrations (the piano reductions
of Beethoven symphonies by Liszt or the Pictures at an
exhibition, a piano piece by Moussorgsky orchestrated by
Ravel and other well-known composers). By observing an
example of projective orchestration (Figure 1), we can see
that this process involves more than the mere allocation of
notes from the piano score across the different instruments.
It rather implies harmonic enhancements and timbre ma-
nipulations to underline the already existing harmonic and
rhythmic structure [3]. However, the visible correlations
between a piano score and its orchestrations appear as a
fertile framework for laying the foundations of a computa-
tional exploration of orchestration.

Statistical inference offers a framework aimed at auto-
matically extracting a structure from observations. These
approaches hypothesize that a particular type of data is
structured by an underlying probability distribution. The
objective is to learn the properties of this distribution, by
observing a set of those data. If the structure of the data is
efficiently extracted and organized, it becomes then possi-
ble to generate novel examples following the learned dis-
tribution. A wide range of statistical inference models have
been devised, among which deep learning appears as a
promising field [7, 8]. Deep learning techniques have been
successfully applied to several musical applications and
neural networks are now the state of the art in most music
information retrieval [9-11] and speech recognition [12,
13] tasks. Several generative systems working with sym-
bolic information (musical scores) have also been success-
fully applied to automatic music composition [14—18] and
automatic harmonization [19].
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Figure 1. Projective orchestration. A piano score is pro-
jected on an orchestra. Even though a wide range of or-
chestrations exist for a given piano score, all of them will
share strong relations with the original piano score. One
given orchestration implicitly embeds the knowledge of the
composer about timbre and orchestration.

Automatic orchestration can actually cover a wide range
of different applications. In [20, 21], the objective is to
find the optimal combination of orchestral sounds in or-
der to recreate any sonic target. An input of the system
is a sound target, and the algorithm explores the different
combination using a database of recorded acoustic instru-
ments. The work presented in [22] consists in modifying
the style of an existing score. For instance, it can gener-
ate a bossa nova version of a Beethoven’s symphony. To
our best knowledge, the automatic projective orchestration
task has only been investigated in [23] using a rule-based
approach to perform an analysis of the piano score. Note
that the analysis is automatically done, but not the alloca-
tion of the extracted structures to the different instruments.
Our approach is based on the hypothesis that the statisti-
cal regularities existing between a corpus of piano scores
and their corresponding orchestrations could be uncovered
through statistical inference. Hence, in our context, the
data is defined as the scores, formed by a series of pitches
and intensities for each instrument. The observations is a
set of projective orchestrations performed by famous com-
posers, and the probability distribution would model the
set of notes played by each instrument conditionally on the
corresponding piano score.

It might be surprising at first to rely solely on the sym-
bolic information (scores) whereas orchestration is mostly
defined by the spectral properties of instruments, typically
not represented in the musical notation but rather conveyed
in the signal information (audio recording). However, we

make the assumption that the orchestral projection performed

by well-known composers effectively took into account the
subtleties of timbre effects. Hence, spectrally consistent
orchestrations could be generated by uncovering the com-
posers’ knowledge about timbre embedded in these scores.

Thus, we introduce the projective orchestration task that
is aimed at learning models able to generate orchestrations

from unseen piano scores. We investigate a class of mod-
els called Conditional RBM (cRBM) [24]. Conditional
models implement a dependency mechanism that seems
adapted to model the influence of the piano score over
the orchestral score. In order to rank the different mod-
els, we establish a novel objective and quantitative evalua-
tion framework, which is is a major difficulty for creative
and systems. In the polyphonic music generation field,
a predictive task with frame-level accuracy is commonly
used by most systems [15, 17,25]. However, we show
that this frame-level accuracy is highly biased and maxi-
mized by models that simply repeat their last input. Hence,
we introduce a novel event-level evaluation framework and
benchmark the proposed models for projective orchestra-
tion. Then, we discuss the qualitative aspects of both the
models and evaluation framework to explain the results ob-
tained. Finally, we selected the most efficient model and
implemented it in a system called Live Orchestral Piano
(LOP). This system performs real-time projective orches-
tration, allowing for anyone to play with an orchestra in
real-time by simply playing on a MIDI keyboard.

The remainder of this paper is organized as follows. The
first section introduces the state of the art in conditional
models, in which RBM, cRBM and Factored-Gated cRBM
(FGcRBM) models are detailed. Then, the projective or-
chestration task is presented along with an evaluation frame-
work based on a event-level accuracy measure. The mod-
els are evaluated within this framework and compared to
existing models. Then, we introduce LOP, the real-time
projective orchestration system. Finally, we provide our
conclusions and directions of future work.

2. CONDITIONAL NEURAL NETWORKS

In this section, three statistical inference models are de-
tailed. The RBM, cRBM and FGcRBM are presented by
increasing level of complexity.

2.1 Restricted Boltzmann Machine
2.1.1 An energy based model

The Restricted Boltzmann Machine (RBM) is a graphi-
cal probabilistic model defined by stochastic visible units
v = {v1,..,vp, } and hidden units h = {hy,.., hy, }.
The visible and hidden units are tied together by a set of
weights W following the conditional probabilities

U2
p(Ui = 1|h> :U(ai—‘rZWith‘) (1)
j=1
p(hj = 1"0) = O'(bj + Z Wij’l)i) (2)
i=1
where o(x) = m is the sigmoid function.

The joint probability of the visible and hidden variables
is given by

—E(v,h)

VA

exp

Pmodel (’U, h) = (3)
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where

Ny N, Np

Th
E(’U, h) = — Z A;V; — Z ZviWijhj - Z bjhj (4)
i=1 j=1

i=1j=1
with ® = {W, b, a} the parameters of the network.
2.1.2 Training procedure

The values of the parameters ® of a RBM are learned
through the minimization of an error function, usually de-
fined as the negative log-likelihood

LO) = Y ~m(pe®e)) G

b v eD

where D is the training dataset and Np the number of ele-
ments that it contains.

The training procedure then modifies the parameters O
of the model by using the gradient of the error function.
However, the gradient of the negative log-likelihood is in-
tractable. Therefore, an approximation of this quantity
is obtained by running a Gibbs sampling chain, a proce-
dure known as the Contrastive Divergence (CD) algorithm
[26,27]. The method alternates between sampling the con-
ditional probabilities of the visible units while keeping the
hidden units fixed (Equation 1) and then doing the oppo-
site, until the vector of visible units is close to the real dis-
tribution of the model. CD provides an adequate approx-
imation for minimizing the loss function and guarantees
that the Kullback-Leibler divergence between the model
and data distribution is reduced after each iteration [28].

2.2 Conditional models

Conditional models introduce context units, which provides
an interesting way of influencing the learning. We briefly
present the cRBM and FGcRBM models and redirect inter-
ested readers to the original paper [29] for more details.

2.2.1 Conditional RBM

In the cRBM model, the influence of the context units is
implemented by introducing an additive term on the biases
a; and b; of both visible and hidden units.

i =a; + Y Apiai (6
k=1

Bj =b; + ZBijk @)
k=1

where @ and b are called dynamic biases (by opposition
to the static biases a and b). The additive term is a linear
combination of a third set of random variables called con-
text units « = {1, .., g, .., Tp, }. By learning the matri-
ces of parameters A and B, the context units can stimulate
or inhibit the hidden or visible units depending on the in-
put. Hence, this provides a mechanism that can influence
the generation based on a particular context. After replac-
ing the static biases by dynamic ones, the conditional dis-
tributions (Equation 1), energy function (Equation 4) and
training procedure remains the same as for the RBM.

2.2.2 Factored Gated cRBM

The Factored Gated cRBM (FGcRBM) model [29] pro-
poses to extend the cRBM model by adding a layer of
feature units z, which modulates the weights of the con-
ditional architecture in a multiplicative way. The dynamic
biases of the visible and hidden units are defined by

a; = a; + Z Z Aip AppAipnz ®)
f okl

bj=bj+) > BisBisBisrra ©)
f okl

and the energy function by

E(’U,h) = —Zdﬂ)i (10)
— Z Z WiijlefUihjZl - Zgjhj an
f

ijl J

This multiplicative influence can be interpreted as a mod-
ification of the energy function of the model depending on
the latent variables z. For a fixed configuration of fea-
ture units, a new energy function is defined by the cRBM
(v, h, and ). Ideally, the three way interactions could be
modeled by three dimensional tensors, such as W;j;. To
define this, the number of parameters should grow cubi-
cally with the number of units. Hence, to reduce the com-
putation load, the three-dimensional tensors are factorized
into a product of three matrices by including factor units
indexed by f such that W;;; = Wi W . Wis.

3. PROJECTIVE ORCHESTRATION

In this section, we introduce and formalize the automatic
projective orchestration task presented in Figure 1. Then,
the piano-roll representation used to process the scores is
detailed. Finally, the application of the previously intro-
duced models in this particular context is defined.

3.1 Task formalization

In the general setting, a piano score and an orchestral score
can be represented as a sequence of states P(t) and O(¢).
We consider that the time instants of both sequences are
aligned. The projective orchestration task consists in pre-
dicting the present orchestral state given the present piano
state and the past orchestral states

O(t) = f(P(t),0(t — N),..,0t—1)) (12

where N is a parameter representing the temporal order (or
horizon) of the task.

3.2 Data representation

A piano-roll representation is used to process both the pi-
ano and orchestral scores. This representation is commonly
used to model a single polyphonic instrument (Figure 2).
Its extension to orchestral scores is obtained straightfor-
wardly by concatenating the piano-rolls of each instrument
along the pitch dimension in order to obtain a matrix. The
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rhythmic quantization is defined as the number of time
frame in the piano-roll per quarter note. Hence, we de-
fine the sequence of piano and orchestra states P(t) and
O(t) as the sequence of the column vectors formed by the
piano-roll representations, where ¢ is a discrete time index.

Original
score

777777777777777777 Piano-roll
. representation

Trombones

\ 4

Time

Figure 2. From the score of an orchestral piece, a conve-
nient piano-roll representation is extracted. A piano-roll pr
is a matrix whose rows represent pitches and columns rep-
resent a time frame depending on the time quantization. A
pitch p at time ¢ played with an intensity i is represented by
pr(p,t) = i, 0 being a note off. This definition is extended
to an orchestra by simply concatenating the piano-rolls of
every instruments along the pitch dimension.

3.3 Model definition

The specific implementation of the models for the projec-
tive orchestration task is detailed in this subsection.

3.3.1 RBM

In the case of projective orchestration, the visible units are
defined as the concatenation of the past and present orches-
tral states and the present piano state

v =[P(t),0(t— N),...,0(t)] (13)

Generating values from a trained RBM consists in sam-
pling from the distribution p(v) it defines. Since it is an
intractable quantity, a common way of generating from a
RBM is to perform K steps of Gibbs sampling, and con-
sider that the visible units obtained at the end of this pro-
cess will represent an adequate approximation of the true
distribution p(v). The quality of this approximation in-
creases with the number K of Gibbs sampling steps.

In the case of projective orchestration, the vectors P(t)
and [O(t — N), ..., O(t — 1)] are known, and only the vec-
tor O(t) has to be generated. Thus, it is possible to infer the
approximation O(t) by clamping O(t — N), ..., O(t — 1)
and P(t) to their known values and using the CD algo-
rithm. This technique is known as inpainting [26].

However, extensive efforts are made during the training
phase to infer values that are finally clamped during the
generation phase. Conditional models offer a way to sepa-
rate the context (past orchestra and present piano) from the
data we actually want to generate (present orchestra).

3.3.2 ¢RBM and FG¢cRBM

In our context, we define the cRBM units as

o(t)

z = [P(t),0(t — N), ..

0t —1)]
and the FG¢cRBM units as

v=0(t)
z=[0(t—-N),..,0t—1)]
z = P(t)

Generating the orchestral state O(t) can be done by sam-
pling visible units from those two models. This is done
by performing K Gibbs sampling steps, while clamping
the context units (piano present and orchestral past) in the
case of cRBM (as displayed in Figure 3) and both the con-
text (orchestral past) and latent units (piano present) in the
case of the FGcRBM to their known values.

3.3.3 Dynamics

As aforementioned, we use binary stochastic units, which
solely indicate if a note is on or off. Therefore, the velocity
information is discarded. Although we believe that the ve-
locity information is of paramount importance in orchestral
works (as it impacts the number and type of instruments
played), this first investigation provides a valuable insight
to determine the architectures and mechanisms that are the
most adapted to this task.

3.3.4 Initializing the orchestral past

Gibbs sampling requires to initialize the value of the vis-
ible units. During the training process, they can be set to
the known visible units to reconstruct, which speeds up
the convergence of the Gibbs chain. For the generation
step, the first option we considered was to initialize the
visible units with the previous orchestral frame O(t — 1).
However, because repeated notes are very common in the
training corpus, the negative sample obtained at the end of
the Gibbs chain was often the initial state itself O(t) =
O(t — 1). Thus, we initialize the visible units by sampling
a uniform distribution between 0 and 1.

4. EVALUATION FRAMEWORK

In order to assess the performances of the different models
presented in the previous section, we introduce a quantita-
tive evaluation framework for the projective orchestration
task. Hence, this first requires to define an accuracy mea-
sure to compare a predicted state O(t) with the ground-
truth state O(¢) written in the orchestral score. As we ex-
perimented with accuracy measures commonly used in the
music generation field [15,17,25], we discovered that these
are heavily biased towards models that simply repeat their
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Figure 3. Conditional Restricted Boltzmann Machine in the context of projective orchestration. The visible units v represent
the present orchestral frame O(¢). The context units & represents the concatenation of the past orchestral and present piano

frames [P(t), O(t— N), ...,

O(t —1)]. After training the model, the generation phase consists in clamping the context units

(blue hatches) to their known values and sampling the visible units (filled in green) by running a Gibbs sampling chain.

last input. Hence, we discuss the temporal granularities
used to process the scores as piano-rolls and propose two
alternatives that we call frame-level and event-level accu-
racy measures.

4.1 Accuracy measure

In order to discriminate the performances of different gen-
erative models, the ideal evaluation would be to compute
the likelihood of an unseen set of data. However, we have
seen that this quantity is intractable for probabilistic mod-
els such as the RBM, cRBM and FGcRBM. An alterna-
tive criterion commonly used in the music generation field
[15,17,25] is the accuracy measure defined as

TP(t)
TP(t) + FP(t) + FN(t)

Accuracy = (14)
where the true positives T'P(t) is the number of notes cor-
rectly predicted, the false positives F'P(t) is the number
of notes predicted which are not in the original sequence
and the false negatives F'N () is the number on unreported
notes.

4.1.1 Temporal granularities

When the accuracy measure defined in Equation 14 is com-
puted for each time index ¢ (termed here frame-level gran-
ularity) of the piano-rolls, this accuracy highly depends on
the rhythmic quantization. Indeed, it can be observed on
the figure 4 that when the quantization used to compute
the piano-roll gets finer, an increasing number of succes-
sive states in the sequence become identical. As a conse-
quence, a model which simply predicts the state O(t) by
repeating the previous state O(t — 1) gradually becomes
the best model as the quantization gets finer.

To alleviate this problem, we rely on an event-level gran-
ularity, which only assesses the prediction for frames of the
piano-roll where an event occurs. We define an event as a
time ¢, where Orch(t.) # Orch(t.—1). Hence, the tempo-
ral precision of the event-level representation no longer de-

Frame- Ievel
quantization =

Frame- Ievel
quantization =

Il {a

Figure 4. Frame-level and event-level granularities. In the
case of the frame-level granularity (left and middle), we
can see that, as the rhythmic quantization gets finer, an in-
creasing number of consecutive frames become identical.
However, with the event-level granularity, the bias imposed
by the temporal quantization can be alleviated, while still
accounting for events that are truly repeated in the score.

Event-level

pends on a quantization parameter and the scores are seen
as a succession of events with no rhythmic structure. In
the general case, this measure should be augmented with
the notion of the event durations. However, in our case,
the rhythmic structure of the projected orchestral score is
imposed by the original piano score.

In the following section, we discuss the impact of the
frame-level and event-level measures on the performance
of the different models.

5. RESULTS
5.1 Database

We created a specific MIDI database of piano scores and
their corresponding orchestrations performed by famous
composers. A total of 223 pairs of piano scores and cor-
responding orchestrations have been collected and 28 dif-
ferent instruments are represented. The database is freely
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available 2, along with detailed statistics and the source
code to reproduce our results.

Following standard notations, all instruments of the same
section are grouped under the same part in the score. For
instance, the violins, which might be played by several in-
strumentalists, is written as a single part. Besides, in order
to reduce the number of units, we systematically remove,
for each instrument, any pitch which is never played in the
database. Hence, the dimension of the orchestral vector is
reduced from 3584 to 1220.

The dataset is split between train, validation and test sets
of files that represent respectively 80%, 10% and 10% of
the full set. For reproducibility, the different sets we used
are provided as text files on the companion website.

5.2 Quantitative evaluation

We evaluate five different models on the projective orches-
tration task. The first model is a random generation of the
orchestral frames from a Bernoulli distribution of param-
eter 0.5 in order to evaluate the complexity of the task.
The second model predicts an orchestral frame at time ¢
by repeating the frame at time ¢ — 1, in order to evaluate
the frame-level bias. These two naive models constitute a
baseline against which we compare the RBM, cRBM and
FGcRBM models.
The complete implementation details and hyper-parameters

can be found on the companion website.

Frame-level Frame-level Event-level

Model accuracy (Q =4) accuracy (Q=38) accuracy
Random 0.73 0.73 0.72
Repeat 61.79 76.41 50.70
RBM 7.67 4.56 1.39
cRBM 5.12 34.25 27.67
FGcRBM 33.86 43.52 25.80

Table 1. Results of the different models for the projective
orchestration task based on frame-level accuracies with a
quantization of 4 and 8 and event-level accuracies.

The results are summarized in Table 1. In the case of
frame-level accuracies, the FGcRBM provides the highest
accuracy amongst probabilistic models. However, the re-
peat model remains superior to all models in that case. If
we increase the quantization, we see that the performances
of the repeat model increase considerably. This is also the
case for the cRBM and FGcRBM models as the predictive
objective becomes simpler.

The RBM model obtains poor performances for all the
temporal granularities and seems unable to grasp the un-
derlying structure. Hence, it appears that the conditioning
is of paramount importance to this task. This could be ex-
plained by the fact that a dynamic temporal context is one
of the foremost properties in musical orchestration.

The FGcRBM has slightly worse performances than the
cRBM in the event-level framework. The introduction of
three ways interactions might not be useful or too intri-
cate in the case of projective orchestration. Furthermore,

Zhttps://gsdfo.github.io/LOP/database

disentangling the interactions of the piano and the orches-
tra against the influence of the temporal context might not
be clearly performed by the factored model because of the
limited size of the database. Nevertheless, it seems that
conditional probabilistic models are valid candidates to tackle
the projective orchestration task.

Even with the event-level accuracy, the repeat model still
obtains a very strong score, which further confirms the
need to devise more subtle accuracy measures. This re-
sult directly stems from the properties of orchestral scores,
where it is common that several instruments play a sus-
tained background chord, while a single solo instrument
performs a melody. Hence, even in the event-level frame-
work, most of the notes will be repeated between two suc-
cessive events. This can be observed on the database sec-
tion of the companion website.

5.3 Qualitative analysis

In order to allow for a qualitative analysis of the results,
we provide several generated orchestrations from differ-
ent models on our companion website. We also report the
different accuracy scores obtained by varying the hyper-
parameters. In this analysis, it appeared that the number of
hidden units and number of Gibbs sampling steps are the
two crucial quantities. For both the cRBM and FG¢cRBM
models, best results are obtained when the number of hid-
den units is over 3000 and the number of Gibbs sampling
steps larger than 20.

We observed that the generated orchestrations from the
FGcRBM might sound better than the ones generated by
the ¢cRBM. Indeed, it seems that the cRBM model is not
able to constraint the possible set of notes to the piano in-
put. To confirm this hypothesis, we computed the accuracy
scores of the models while setting the whole piano input to
zero. By doing this, we can evaluate how much a model
rely on this information. The score for those corrupted in-
puts considerably dropped for the FGcRBM model, from
25.80% to 1.15%. This indicates that the prediction of this
model heavily rely on the piano input. Instead, the cor-
rupted score of the cRBM drops from 27.67% to 17.80%.
This shows that the piano input is not considered as a cru-
cial information for this model, which rather performs a
purely predictive task based on the orchestral information.

5.4 Discussion

It is important to state that we do not consider this predic-
tion task as a reliable measure of the creative performance
of different models. Indeed, predicting and creating are
two fairly different things. Hence, the predictive evalua-
tion framework we have built does not assess the genera-
tive ability of a model, but is rather used as a selection cri-
terion among different models. Furthermore, this provides
an interesting auxiliary task towards orchestral generation.

6. LIVE ORCHESTRAL PIANO (LOP)

We introduce here the Live Orchestral Piano (LOP), which
allows to compose music with a full classical orchestra in
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real-time by simply playing on a MIDI piano. This frame-
work relies on the knowledge learned by the models in-
troduced in the previous sections in order to perform the
projection from a piano melody to the orchestra.

6.1 Workflow

The software is implemented on a client/server paradigm.
This choice allows to separate the orchestral projection task
from the interface and sound rendering engine. That way,
multiple interfaces can easily be implemented. Also, it
should be noted that separating the computing and ren-
dering aspects on different computers could allow to use
high-quality and CPU-intensive orchestral rendering plu-
gins, while ensuring the real-time constraint on the over-
all system (preventing degradation on the computing part).
The complete workflow is presented in Figure 5.

The user plays a melody (single notes or chords sequences)
with a MIDI keyboard, which is retrieved inside the inter-
face. The interface has been developed in Max/Msp, to fa-
cilitate both the score and audio rendering aspects. The in-
terface transmits this symbolic information (as a variable-
length vector of active notes) via OSC to the MATLAB
server. This interface also performs a transcription of the
piano score to the screen, by relying on the Bach library
environment. The server uses this vector of events to pro-
duce an 88 vector of binary note activations. This vector
is then processed by the orchestration models presented in
the previous sections in order to obtain a projection of a
specific symbolic piano melody to the full orchestra. The
resulting orchestration is then sent back to the client in-
terface which performs both the real-time audio rendering
and score transcription. The interface also provides a way
to easily switch between different models, while control-
ling other hyper-parameters of the sampling

7. CONCLUSION AND FUTURE WORKS

We have introduced a system for real-time orchestration
of a midi piano input. First, we formalized the projective
orchestration task and proposed an evaluation framework
that could fit the constraints of our problem. We showed
that the commonly used frame-level accuracy measure is
highly biased towards repeating models and proposed an
event-level measure instead. Finally, we assessed the per-
formance of different probabilistic models and discussed
the better performances of the FGcRBM model.

The conditional models have proven to be effective in the
orchestral inference evaluation framework we defined. The
observations of the orchestration generated by the models
tend to confirm these performance scores, and support the
overall soundness of the framework. However, we believe
that the performances can be further improved by mixing
conditional and recurrent models.

The most crucial improvement to our system would be to
include the dynamics of the notes. Indeed, many orchestral
effects are directly correlated to the intensity variations in
the original piano scores. Hence, by using binaries units,
an essential information is discarded. Furthermore, the
sparse representation of the data suggests that a more com-

pact distributed representation might be found. Lowering
the dimensionality of the data would greatly improve the
efficiency of the learning procedure. For instance, meth-
ods close to the word-embedding techniques used in natu-
ral language processing might be useful [30].

The general objective of building a generative model for
time series is one of the currently most prominent topic
for the machine learning field. Orchestral inference sets a
slightly more complex framework where a generated mul-
tivariate time series is conditioned by an observed time se-
ries (the piano score). Finally, being able to grasp long-
term dependencies structuring orchestral pieces appears as
a promising task.
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