
THE DESIGN OF A LIGHTWEIGHT DSP PROGRAMMING LIBRARY

Victor Lazzarini
Maynooth University,

Ireland
victor.lazzarini@nuim.ie

ABSTRACT

This paper discusses the processes involved in designing
and implementing an object-oriented library for audio sig-
nal processing in C++ (ISO/IEC C++14). The introduction
presents the background and motivation for the project,
which is related to providing a platform for the study and
research of algorithms, with an added benefit of having an
efficient and easy-to-deploy library of classes for applica-
tion development. The design goals and directions are ex-
plored next, focusing on the principles of stateful represen-
tations of algorithms, abstraction/ encapsulation, code re-
use and connectivity. The paper provides a general walk-
through the current classes and a detailed discussion of two
algorithm implementations. Completing the discussion, an
example program is presented.

1. INTRODUCTION

In 1998, I introduced version 1.0 of the SndObj library [1],
which was at the time most likely one of the first gener-
ally available free and open-source general-purpose C++
class libraries for audio processing. It came out at around
the same time as another early C++ toolkit, STK [2], which
was mostly oriented to synthesis with physical models. The
SndObj library included not only signal processing classes
but also support for cross-platform realtime audio and MIDI,
as it aimed to encompass all the general-purpose audio use
cases [3]. The original code was completely based on pre-
standard C++, as it appeared around the same time the
C++98 was about to be published. It was heavily modelled
on Stroustrup’s prescriptions [4].

Over time, the library developed to include some of C++98
and later C++03 ideas, but its development suffered from
the twists and turns of the language as it began to be stan-
dardised. In hindsight, writing thousands of lines in hun-
dreds of source-code files based on a moving target as was
C++ twenty years ago was an unwise and perilous task.
However, someone had to do it. In the following decade,
many C++ object-oriented library projects got developed,
as the terrain got firmed underneath them.

My own attention got diverted elsewhere and from about
2005, very little was done to the SndObj library apart from
adding wrappers to it and employing it as the basis for

Copyright: © 2017 Victor Lazzarini . This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Python projects. The code, however, proved to be a good
resource for teaching and I extracted many components
from it as free-standing functions that I would use in class-
room, creating a small function library for my students [5].
This allows the algorithms to be studied and played with,
but it is not robust enough to be used more generally.

With the advent of C++11 [6], I have renewed my inter-
est in the language and have realised that it is now in a
much more stable state, which would warrant some time
and resource investment. For those who work mostly in
C, like myself, it is still a system of elephantine propor-
tions that lacks some of the finesse of small languages. It
has been described as having “the power, the elegance, and
the simplicity of a hand grenade” 1 . However, when used
in moderation, it can provide a number of benefits as an
extension of C.

This is the background to the development of AuLib [7].
The motivation is to provide a simple, lightweight platform
for the study, teaching, and research of digital signal pro-
cessing (DSP) algorithms for audio, taking advantage of
the newer, more established, C++ standards. It also has the
added benefit of providing efficient and portable code that
can be easily packaged and deployed in general-purpose
applications. The fundamental aim is to provide wrappers
for algorithms, where the audio processing code can be
easily accessed, studied, and modified. This is wrapped
in a very thin interface layer that allows easy connectivity
of objects and a class hierarchy that emphasises common
components and code re-use. The library code attempts to
adhere strictly to C++14 [8] standards and best practices,
as it aims to provide an example of robust software design.

This paper is organised as follows. We will present the
library design and discuss the decisions taken in its devel-
opment. A tour of the library and its current constituent
classes is shown next, exploring it from the perspective of
signal generation, processing, and input and output. Fi-
nally, two classes are singled out for a more detail discus-
sion and a full program example is presented.

2. LIBRARY DESIGN

The library design borrows from a number of sources, which
have shown the best practice in the implementation of au-
dio programming code. One of the guiding aspects was
to allow a good deal of flexibility in the construction of
classes, instead of mandating the presence of specific com-
ponents via an abstract base class with a number of empty

1 Quote attributed to Kenneth C. Dyke, 05/04/97.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-5

mailto:victor.lazzarini@nuim.ie
http://creativecommons.org/licenses/by/3.0/

virtual methods. Instead, processing methods may or may
not exist in a derived class, depending on what they are
supposed to implement. They can be given any name,
although the established informal nomenclature is to call
them process().

The principal base class in the library is AudioBase.
This is subclassed to implement all different audio-handling
objects, from synthesis/processing to signal buffers, func-
tion tables, delay lines, and audio IO. The layout of Audio
Base is informed by a number of basic design decisions
that underpin the principles of AuLib.

2.1 Stateful vs. stateless representations

One of the basic motivations for AuLib was to place self-
standing algorithms, previously implemented as free func-
tions, within a wrapping object allowing the safe-keeping
of internal states. Let’s explore this idea with a simple ex-
ample of a sinusoidal oscillator, described by eq. 1.

s(t) = a(t) sin

(
2π

∫
f(t)

)
(1)

A C implementation of such function would have to take
account of the sample-by-sample phase values that are pro-
duced by the integration of the time-varying frequency f(t).
Typically, in a sane implementation, the current value of
the phase would be kept externally to the function, and
modified as a side-effect (listing 1).

Listing 1. C function implementing eq. 1

const double twopi = 8. * atan(1.);
double sineosc(double a, double f,

double *ph, double sr){
double s = a * sin(*ph);

*ph += twopi * f / sr;
return s;

}

While this is entirely appropriate to demonstrate and ex-
pose the oscillator algorithm for study, it is clearly not ro-
bust enough to be incorporated into a library. Quite rightly,
users would expect to be able to use such functions to im-
plement multiple oscillators, in banks, or for amplitude
or frequency modulation. In this context, a programmer
could inadvertently supply a single phase address to a se-
ries of calls to such functions when implementing a bank
of oscillators and would clearly fail to get the intended re-
sult. While it could work when carefully employed, such
as stateless presentation of the algorithm is clearly incom-
plete.

While there are ways of describing a sine wave oscilla-
tor in a stateless or purely functional fashion, once we are
committed to define the computation in a stateful form, we
need to provide a means to keep an account of the current
state. Clearly, a self-contained oscillator will need to main-
tain the last computed value of the phase, as the algorithm
contains an integration. For this, we can wrap the whole
algorithm in a class that models its state and the means to
get an output sample. A minimal C++ class implementing
such oscillator is shown in listing 2.

Listing 2. C++ class implementing eq. 1

struct SineOsc {
double m_ph;
double m_sr;

SineOsc(double ph, double sr)
m_ph(ph), m_sr(sr) {};

double process(double a, double f){
double s = a * sin(m_ph);
m_ph += twopi* f / m_sr;
return s;

}
};

With an object-oriented implementation, the stateful de-
scription of the algorithm is complete and provides enough
robustness for use in a variety of contexts. Likewise, if we
look across the various types of DSP operations that a li-
brary would hope to implement, we will see all sorts of
state variables involved. This provides enough motivation
for the wrapping of such algorithms in C++ classes.

2.2 Abstraction and encapsulation

In fact, by clearly describing an algorithm as having a state
and a means of computing its output, we are abstracting
the DSP object as a specific data type. This encapsulates
all the kinds of operations we would expect to be able to
apply to such an object. What are the things we would
like any DSP algorithm to contain? It would be useful for
instance for it to hold its output so that we only need to
compute it once. Basic attributes such as the sampling rate
and the frame size (number of channels in an interleaved
signal) would also be essential.

For efficient implementation, the output should not be
limited to sample-by-sample computation (as in the min-
imal example of the oscillator in listing 2). Typically, we
would want a block of frames to be generated for each call
of a processing method, which may vary in size. A means
of registering whether the object is in an error state would
also be useful for program diagnostics. In this formulation,
a class that models a generic Audio DSP object would con-
tain the following attributes (listing 3)

Listing 3. Attributes of the Audio DSP base class

class AudioBase {
protected:
uint32_t m_nchnls;// no of channels
uint32_t m_vframes;// vector size
std::vector<double> m_vector;
double m_sr;// sampling rate
uint32_t m_error;// error code
...

};

These are protected so that no unintended modification is
allowed. This class is for all practical purposes a wrapper
around an audio vector (of double floating-point samples).

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-6

Methods for basic manipulation are also added: scale, off-
set, modulation, mixing, and sample access are provided
through overloaded operators. Setting and getting samples
off the vector are also provided (single channel samples,
full blocks, etc.), and to modify the vector size, as well as
methods to get the value of the object attributes.

2.3 Code re-use

Since we have embraced, for good reasons, the object-
oriented approach, it is very useful to take advantage of
inheritance, as well as composition. For this reason, I have
designed the class hierarchy from the most general to the
most specific, although overall the tree is not very deep
(six levels at most). We will see two specific cases in more
detail in section 4, but as an example, the ResonZ class
shows how the re-use of code can be employed. In fig. 1,
we see that it is subclassed from a series of parents.

Figure 1. The ResonZ class and its parents.

At the top-level, Iir implements the basic second-order
infinite impulse response (IIR) filter engine in direct form
II (eq.2), with externally-defined coefficients.

w(t) = x(t)− b1w(t− 1)− b2w(t− 2)

y(t) = a1w(t) + a1w(t− 1) + a2w(t− 2)
(2)

The LowP class holds a frequency parameter to calculate
Butterworth low-pass coefficients; BandP adds a band-
width attribute and re-implements the calculation of coeffi-
cients for a Butterworth band-pass configuration; ResonR
re-implements the coefficient computation for a Resonator
with an extra zero at R; ResonZ just sets the a2 coefficient
to -1, otherwise using the coefficient update code from its
parent.

This shows an example of how each subclass represents
mostly small modification of its parent, with most of its
code re-used. Another benefit is that if a modification needs
to be made (e.g. a bug fix), it does not need to be repro-
duced at several places (which opens the door for introduc-
ing small errors at these different locations).

Code re-use through composition is also employed through-
out the library. For example, the Delay class holds an
AudioBase object that implements its delay line, using
the inlined access methods provided in that class. The
Balance class, which implements envelope following and
signal amplitude balancing, is made up of two Rms ob-
jects that are used to measure the RMS amplitude of input
signals. Rms itself is a specialisation of a first-order low-
pass filter class. In another example, the TableSet class,
which is an utility class for the band-limited oscillator class
BlOsc is made up of a vector of FourierTable objects
containing waveform tables.

2.4 Connectivity

Some special attention has been given to the ways in which
objects can be easily connected with each other and with
code from other libraries (both in C and C++). For this to
be achieved, there are two ways in which input and output
to objects can be achieved:

1. Through direct pointers to data: these are presented
in the form of const double* to allow signals
from other libraries and non-AuLib sources to be in-
serted as inputs to processes. These, in turn, also
return a const double* to the object vector so
that they can be sent to other destinations. This type
of connectivity is unsafe, from a C++ perspective, as
it requires the programmer to carefully set the vec-
tor boundaries, although it is common place within
a C-language context.

2. Object references: processing methods also allow
connections to and from const AudioBase &
variables, which provides more safety since vector
boundaries are checked before access. They are the
preferred way to pass signals from one library object
to another. For convenience, classes overload the
operator() as a shortcut for processing methods
using object references.

While there is no mandatory way in which this is en-
forced in derived classes, the informal convention is to pro-
vide two processing methods as part of the public interface:
one which deals with data pointers (producing and/or con-
suming arrays) and another that uses object references as
input and/or output, as shown in listing 4. These methods
delegate to a private virtual DSP method, which does the
actual processing for the object and can be overriden in a
derived class. This approach allows for good separation of
concerns between interface and implementation.

Listing 4. Processing methods and their connectivity

class Proc : public AudioBase {

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-7

virtual const double *
dsp(const double *sig);

public:
const double *
process(const double *sig) {
return dsp(sig);

}
const Proc &
process(const AudioBase &obj) {
if(obj.vframes() == m_vframes &&

obj.nchnls() == m_nchnls) {
process(obj.vector());

} else m_error = AULIB_ERROR;
return *this;

}
const Proc &
operator()(const AudioBase &obj) {
return process(obj);

}
...
};

No blocking operations (and/or resource allocation) should
take place in a processing method. This is also the case
for all inline vector manipulation methods (operators, etc.)
provided by the base class, which are all real-time safe.

3. A TOUR OF THE LIBRARY

There are currently 61 classes in the library, of which 56 sit
in the main AudioBase tree. Fig.2 shows the AuLib::
AudioBase class hierarchy. These classes can be loosely
categorised as processing (signal generators and proces-
sors, ie. they implement process() methods), function
tables, holding mostly constant buffers, and input/output,
which allow some form of audio IO through read() or
write methods. In addition to these, the library also fea-
tures note, instrument and score model classes.

3.1 Signal generators

Signal generators in AuLib include standard table-lookup
oscillators (discussed in more detail in section 4), sampled-
sound and band-limited waveform oscillators, phase gener-
ator, table readers, and envelope generators. The Sample
Player class takes a buffer/function table containing rec-
orded samples and plays it back with pitch and amplitude
control either in a loop or as a single-shot performance.
It can handle multichannel sample tables producing multi-
channel output and uses linear interpolation for table lookup.

The library supports a number of function table classes,
derived from FuncTable, which hold waveforms, en-
velopes, or signal samples. These can be read by oscil-
lators or by table lookup objects, whose indices can be de-
rived from any signal. A phase generator connected to a
table reader implements an oscillator algorithm.

The BlOsc class implements band-limited waveform syn-
thesis using wavetables stored in a TableSet object. This
will contain a set of band-limited tables that are selected
according to the desired fundamental frequency. Currently,
TableSet supports classic waveforms (such as Sawtooth,

Square and Triangle) constructed using FourierTable
objects. However the mechanism can be expanded to han-
dle generalised band-limited waveforms.

The library contains single-segment linear and exponen-
tial signal generators, which can be triggered and reset.
Extending these, a generalised multi-segment plus release
envelope class Envel is provided. It uses a utility class,
Segments, that is used to set up a segment list that can
be shared among several envelopes (and also used for en-
velope tables). A pre-packaged four-segment envelope,
ADSR (attack-decay-sustain-released) is derived from it as
a convenient way to create simple envelopes. The release
segment in these classes is triggered by a specific method
(release()), which makes the envelope jump immedi-
ately to that stage.

3.2 Signal processors

The library contains a basic set of signal processing classes.
Seven types of second-order, plus two first-order (low- and
high-pass) filters are present, alongside root-mean-square
detection and signal balancing. The Delay class imple-
ments fixed or variable delays (depending on the choice
of overloaded processing functions), with or without feed-
back. It can implement comb filters, flangers, vibrato and
chorus effects. Derived from it, we have a high-order all-
pass filter and a general-purpose finite impulse response
filter (implementing direct convolution, which is discussed
in section 4). Delay objects can be tapped by Tap (trun-
cating) or Tapi (interpolating) processors.

Some signal-processing utilities are present. A channel
extractor, Chn, takes an interleaved multi-channel input
and outputs a requested channel. A signal bus, SigBus,
can be used as a mixer, with scaling and offset. Complet-
ing these, there is an equal-power panning class, Pan, that
produces a stereo output from a mono input signal.

In addition to these time-domain processing classes, AuLib
provides support for streaming spectral processing using
the short-time Fourier transform and its derivative, the phase
vocoder. Free (stateless) functions for complex and real in-
put discrete Fourier transform (using a radix-2 algorithm)
are implemented from first principles and are also available
for general use. A partitioned convolution class is also im-
plemented using these functions.

3.3 Input and output

An asynchronous (non-blocking) input and output (IO) fa-
cility is provided as part of the library, through the SoundIn
and SoundOut classes. The interface is fairly agnostic as
far as its implementation is concerned. Currently, it pro-
vides a frontend to libsndfile 2 , for soundfile IO, portau-
dio 3 , for realtime device IO, and std::iostream for
standard text IO.

Users of the library do not actually depend on these two
IO classes. For instance, an application could place the
processing classes directly in an audio system callback (e.g.
through Jack 4), without the use of any AuLib IO object.

2 http://www.mega-nerd.com/libsndfile
3 http://www.portaudio.com
4 http://jackaudio.org

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-8

http://www.mega-nerd.com/libsndfile
http://www.portaudio.com
http://jackaudio.org

Figure 2. AuLib class hierarchy.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-9

Equally, a processing graph based on library objects can
be incorporated in a variety of settings, such as embedded
hardware, mobile devices, etc..

In addition to Audio, a MidiIn class is also provided, de-
pendent on the PortMidi library 5 . This is used to create
MIDI-based applications, using the Instrument class.

4. EXAMPLES

In this section, we will look in detail at two examples of
standard DSP algorithms and how they are implemented in
the library.

4.1 Table-lookup oscillator

The table look-up oscillator, whose pedigree can be traced
back to MUSIC III [9], is one of the cornerstones of digi-
tal synthesis systems. It is defined by the pair of equations
3 and 4, which characterise table lookup and phase incre-
ment, respectively, and represent a generalisation of eq.1
(N is the function size in samples and fs is the sampling
rate; a(t) and f(t) are the amplitude and frequency param-
eters).

s(t) = a(t)T(ω(t)) (3)

ω(t+ 1) = f(t)N/fs (4)

The function T() in eq.3 can be implemented in various
forms. The simplest of them employs a floor operation,
bω(t) mod Nc. This is called a truncating lookup and is
implemented in listing 5, for the base class Oscil. Other
forms can include interpolation schemes of various orders.
In AuLib, linear and cubic lookups are implemented in de-
rived classes, Oscili and Oscilic (fig.3).

Figure 3. The Oscil class and its parents and children.

Listing 5. Truncating table-lookup oscillator.

void
AuLib::Oscil::dsp(){
for(uint32_t i = 0;

i < m_vframes; i++){
am_fm(i);

5 http://portmedia.sourceforge.net/portmidi

m_vector[i] =
m_amp * m_table[(uint32_t)m_phs];
mod();

}
}

Given that these share most components and only differ
in how the table is accessed, it makes sense to express this
commonality by inlining some operations. The functions
f(t) and a(t) are updated from inputs in am_fm(), where
they can vary on a sample-by-sample or vector-by-vector
basis.

In order to give full flexibility and efficiency in param-
eter handling, a set of overloaded process() methods
are provided, for fixed, varying, or modulating frequency
and/or amplitude parameters. The actual processing code
is delegated to dsp() virtual method (shown in listing 5
for the truncating case), which is then called by the proc-
ess() interfaces defined in the base class.

4.2 Convolution

As a second implementation, we will have a look at direct
(delay line) convolution, defined in eq. 5 for an impulse
response N samples long. This effectively implements a
finite impulse response (FIR) filter, which gives the name
to the class containing the algorithm (Fir). Given that its
main structure is a delay line, we inherit all of its internal
components from Delay (fig.4).

y(t) =

N−1∑
n=0

s(t− n)h(n) (5)

All we need to do is override the dsp(const double*)
method. As in the previous example, and indeed across all
of the library, signal processing is delegated to this func-
tion by the interface.

Figure 4. The Fir class and its parents.

The implementation is shown in listing 6, which is very
compact. We can think of it as a fixed delay line tapped
at each sample, with scaling factors taken from an impulse
response (provided by a buffer/table object). Since the loop
goes accessing the samples from maximum to no delay, the
impulse response has to be read in reverse order.

Listing 6. Convolution implementation.

const double *

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-10

http://portmedia.sourceforge.net/portmidi

AuLib::Fir::dsp(const double *sig){
double out = 0;
uint32_t N = m_ir.tframes();
for(uint32_t i = 0;

i < m_vframes; i++){
m_delay[m_pos] = sig[i];
m_pos = m_pos != N-1 ?

m_pos + 1 : 0;
for(uint32_t j = 0,rp = m_pos;

j < N; j++){
out +=
m_delay[rp] * m_ir[N-1-j];
rp = rp != N ? rp + 1 : 0;

}
m_vector[i] = out;
out = 0.;

}
return vector();

}

5. AN ECHO PROGRAM

To complete the discussion, an echo program is shown in
listing 7. Fig.5 shows the flowchart for a single audio input
channel (multichannel input is allowed, with stereo out-
put).

SoundIn
?

Chn

?
Delay
?

?
�f+

Pan
?

SigBus
?

SoundOut

Figure 5. The signal flowchart for a single input channel in
the echo program.

At the top of the program listing, lines 1 to 6 include the
required AuLib classes, SoundOut, SoundIn, Delay,
Chn, SigBus and Pan. A sound input object is con-
structed in line 17, taking as a source either the name of
a soundfile, "adc" for realtime audio, or "stdin" for
standard input. Arrays of channel readers, delay lines and
panners are created next according to the requested num-
ber of channels. Lines 24 and 25 contain the mixer object
and sound output constructors. Again, the output desti-
nation can be a soundfile name, "dac" for realtime, or
"stdout" for standard output.

The processing loop, lines 33 to 44, is made up of calls to
the various DSP objects through their operator(), plus
the clearing of the signal bus mixer. It runs until the input
is finished, which will depend on the source of samples.
Note also the use of the overloaded operator += (in line

38) as a means of adding the dry and wet effect signals at
the pan processing input.

6. CONCLUSIONS

This paper described the design of a simple, lightweight
audio DSP library in C++. The main motivation is to pro-
vide a platform to develop and collect algorithms for the
study, teaching and research in audio programming. The
library classes are effectively thin wrappers that envelope
succinct and efficient implementations of DSP operations.
The code has been designed to be robust enough for general-
purpose deployment in audio processing applications. So-
urce code and multi-platform build scripts are provided at

https://github.com/vlazzarini/aulib

AuLib is free software, licensed by the Lesser GNU Pub-
lic License.

7. REFERENCES

[1] V. Lazzarini and F. Accorsi, “Designing a sound ob-
ject library,” in Proceedings of the XVIII Brazilian
Computer Society Conference, vol. III, Belo Horizonte,
1998, pp. 95–104.

[2] P. Cook and G. Scavone, “The synthesis toolkit (stk),”
in Proceedings of the ICMC 99, vol. III, Berlin, 1999,
pp. 164–166.

[3] V. Lazzarini, “The SndObj sound object library,” Or-
ganised Sound, no. 5, pp. 35–49, 2000.

[4] B. Stroustrup, The C++ Programming Language,
2nd ed. Addison-Wesley, 1991.

[5] V. Lazzarini, “Time-domain signal processing,” in The
Audio Programming Book, R. Boulanger and V. Laz-
zarini, Eds. MIT Press, 2010, pp. 463–512.

[6] ISO/IEC, “ISO international standard ISO/IEC
4882:2011, programming language C++,” 2011. [On-
line]. Available: http://www.iso.org/iso/iso catalogue/
catalogue tc/catalogue detail.htm?csnumber=50372

[7] V. Lazzarini, “AuLib documentation, v.1.0 beta,” 2017.
[Online]. Available: http://vlazzarini.github.io/aulib/

[8] ISO/IEC, “ISO international standard
ISO/IEC 14882:2014, programming lan-
guage C++,” 2014. [Online]. Avail-
able: http://www.iso.org/iso/home/store/catalogue ics/
catalogue detail ics.htm?csnumber=64029

[9] V. Lazzarini, “The development of computer music
programming systems,” Journal of New Music Re-
search, no. 42, pp. 97–110, 2013.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-11

https://github.com/vlazzarini/aulib
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://vlazzarini.github.io/aulib/
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=64029
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=64029

Listing 7. Echo example program.
1 #include <Chn.h>
2 #include <Delay.h>
3 #include <Pan.h>
4 #include <SigBus.h>
5 #include <SoundIn.h>
6 #include <SoundOut.h>
7 #include <iostream>
8 #include <vector>
9

10 using namespace AuLib;
11 using namespace std;
12
13 int main(int argc, const char **argv) {
14
15 if (argc > 2) {
16
17 SoundIn input(argv[1]); // audio input
18
19 std::vector<Chn> chn(input.nchnls()); // input channels
20 std::vector<Delay> echo(input.nchnls(),
21 Delay(0.5, 0.75, def_vframes, input.sr())); // delay lines
22 std::vector<Pan> pan(input.nchnls()); // stereo panning
23
24 SigBus mix(1. / input.nchnls(), 0., false, 2); // mixing bus
25 SoundOut output(argv[2], 2, def_vframes, input.sr()); // audio output
26 uint64_t end = input.dur() + 5*output.sr();
27
28 std::vector<uint32_t> channels(input.nchnls()); // list of channels
29 std::iota(channels.begin(), channels.end(), 0);
30
31 cout << Info::version();
32
33 while ((end -= def_vframes) > def_vframes) {
34 input();
35 for(uint32_t channel : channels) {
36 chn[channel](input, channel + 1);
37 echo[channel](chn[channel]);
38 pan[channel](echo[channel] += chn[channel],
39 (1 + channel) * input.nchnls() / 2.);
40 mix(pan[channel]);
41 }
42 output(mix);
43 mix.clear();
44 }
45
46 return 0;
47 } else
48 std::cout << "usage: " << argv[0] << " <source> <dest>\n";
49
50 return 1;
51 }

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-12

